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Abstract 

The present work looks into the question of optimizing the performance of product launch 

decisions—in particular, the decisions of product development duration and manufacturing 

ramp-up. It presents an innovative model for measuring product launch performance and 

optimizing the decisions by integrating a design structure matrix model for product development, 

a technical cost model for manufacturing, and revenue and warranty models for customer 

reaction to product quality into one model using net revenue as a metric. The model shows that 

overlooking the interactions between product development and manufacturing leads to 

suboptimal decisions. Furthermore, it points out that product quality is apparently the most 

important driver for product launch performance and that the effects of product launch decisions 

on resulting product quality need to be considered. Results from case studies demonstrate that 

improving firm’s tactical strategies will help shorten product launch and improve its 

performance, while factors such as low reputation or high product failure rate will require 

lengthening product launch to minimize their impacts. Finally, the model results are analyzed to 

yield direction for firms relative to strategies that can be implemented to improve product launch 

performance. The most effective strategy is one that improves the PD capability (higher ability to 

find and fix problems) and the second most effective is to improve problem solving in 

manufacturing ramp-up. 
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1 Introduction 

The manufacturing industry is facing multiple challenges: continually changing technology, 

fierce competition on a global scale, nearly identical products due to similar technologies and 

common components, and well informed customers. (Murthy and Djamaludin 2002) In the past, 

firms could rely primarily on steady state operations to turn a profit; transient events in 

operations occurred, but were generally noncritical to the firm’s performance. Increasingly, this 

is changing. 

 Product innovations and market competition are driving firms to shorten product lifecycles and 

introduce new products at a seemingly ever faster pace. Firms need to release new products 

faster simply to ‘keep up with the game.’ There is evidence of increasing number of products 

release per firm in the past 20 years, as presented in Figure 1-1. (Bayus 1998) This trend has 

significantly increased the importance of ‘regular’ transient behavior operations such as product 

launches. 

 
Figure 1-1: Average Number of Product Models per Firm in Personal Computer Industry (Bayus 1998) 

Manufacturing product launch is the process of introducing a new product or new features in an 

existing product into a firm’s production operations. It can have a substantial impact to the firm’s 

operation depending on the complexity of the new product or new features. In the automotive 

industry, for example, Ceglarek et al. (2004) claims that product launch used to occupy 

approximately 5% of a product’s lifecycle 10 years ago, while now it can represent as much as 
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20% of that lifecycle, where product lifecycle is defined as the time between the first 

manufactured product until the time it is withdrawn from the manufacturing facility. (Polli and 

Cook 1969) From the manufacturing perspective, product launch can cause a disruption due to 

process change or process addition, resulting in the production line slowing down and/or 

decreasing product quality. During manufacturing launch, the facility either slows down the 

manufacturing rate of the new product to avoid encountering too many problems in the 

beginning or keeps the rate constant but suffers yield loss. This transient period operation can 

range from a few weeks to months. Depending on the problem solving process during 

manufacturing, the facility will increase the manufacturing rate until eventually it is at full 

capacity. This process is called manufacturing ramp-up. The manager must make decisions on 

the manufacturing rat of each period. 

 
Figure 1-2: Typical Automotive Manufacturing Launch 

However, introducing a product is more than just manufacturing. There are multiple processes 

that come before manufacturing launch, referred to collectively as product development (PD). 

PD consists of conceptual design, detailed design, prototyping, and testing and validation. 

During product development, the development team works on product concepts and design 

parameters and at the same time eliminates potential problems arising from the design. Ideally, 

the team will attempt to eliminate all design problems before submitting the design to be 

manufactured. However, due to time pressure and realistic resource limitations, the team is never 
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able to eliminate all the problems and some make it through to manufacturing. These defects 

affect the amount of manufacturing errors encountered and the quality of the finished products. 

The manufacturing errors increase the manufacturing cost, while the finished product quality will 

influence the firm reputation and demand for the products. 

Manufacturing costs can be divided into fixed costs and variable costs. The fixed costs are 

generally associated with capital investments, while the variable costs are dependent on the 

production volume. By definition, variable costs are constant on a per unit product basis. 

Therefore, when considered as total variable cost, they are generally thought of as directly 

proportional to production volume. In matured processes, where changing cycle time has 

virtually no impact on the rate of errors, variable costs would remain relatively constant 

regardless of cycle time choice. However, in the case of manufacturing launch, where 

manufacturing processes are new and prone to errors, changes in production volume may lead to 

considerable changes in the rate of errors, forcing the manager to make different cycle time 

decisions, which influence the total variable costs. 

The finished product quality can also suffer during product launch. Unresolved design problems 

that exist during manufacturing and are not eliminated stay in the final products, resulting in low 

product quality. Low product quality affects the customer perception of firm reputation, leading 

to low demand and revenue. 

With the complexity and implications of product launch, manufacturing facility managers have 

multiple operating parameter decisions to make, such as the start of launch and manufacturing 

rate. In this case, manufacturing models are useful to help managers explore manufacturing 

strategies and anticipate the results. However, if the managers fail to realize the interaction 

between product development, manufacturing, and product quality,  

Because the ultimate goal of a firm is to maximize profit, a firm needs to understand that product 

launch is not merely the introduction of new parts and processes in a manufacturing facility. It is, 

in fact, a much larger process that is inseparable from product development and affects the sales 

of the firm even after the launched product is withdrawn. 
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1.1 Background 

To understand the transient behaviors taking place during product launch, background 

information of each process will be explored. Relevant literatures are reviewed to understand the 

latest progress in the research community on the topics and identify unexplored area for which 

this dissertation may contribute. 

1.1.1 Manufacturing 

Normally, even before volume manufacturing begins, there are several product development 

activities that require the manufacture of prototypes to test. Similarly, even while volume 

production is beginning, firms are still developing the product particularly with regard to 

modifications that eliminate operational issues. Nevertheless, to simplify the subsequent 

framework discussions, manufacturing will be defined as the period of a product’s lifecycle that 

begins the first time the new product or the new feature of a product is manufactured in a volume 

production facility and lasts until the product is phased out of that facility. 

A facility manager needs to make decisions on how to proceed concerning manufacturing ramp-

up. The process is complex and involves efforts from workers and supervisors from all parts of 

the production line. By decreasing the rate, the facility will encounter fewer disruptions or 

manufacturing events, but it will produce fewer products and vice versa. While the fewer number 

of errors is desirable, the errors are important in manufacturing learning process. (Li and 

Rajagopalan 1997) The process of manufacturing learning is crucial to manufacturing ramp-up. 

Errors will help workers learn to deal with manufacturing events and potentially eliminate the 

source of problems, allowing the manager to increase the manufacturing rate without suffering 

overly from manufacturing events. 

A large body of literature addresses the importance of enhancing the production capacity during 

manufacturing ramp-up. Chand et al. (1996) focus their research on the decision of allocating 

productive capacity between production activities and improvement activities. Li and 

Rajagopalan (1997) study the impact of part quality on learning rate. Several authors also point 

out the significance of process changes to improve firm’s manufacturing capacity. Carrillo and 

Gaimon (2000) modeled investments on process change and knowledge creation from planning 

and training versus process improvement and gave recommendations on investment strategies on 
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these items. Terwiesch and Xu (2004) study the tradeoff between capacity enhancement from 

process change and learning during manufacturing ramp-up.  

Although with the amount of literature available on product and process improvement during 

ramp-up, the questions dealing with decisions during ramp-up still remain relatively unexplored, 

as commented in the review of literature by Krishnan and Ulrich (2001). There are, however, a 

few exceptions. Terwiesch et al. (2001) indicated that the high-tech firms are shifting from 

minimizing time-to-market to minimizing time-to-volume and studied the problems during 

manufacturing ramp-up in data storage industry. Terwiesch and Bohn (2001) proposed the 

modeling of manufacturing ramp-up as manufacturing period with experimentation that results in 

additional cost and lower utilization, but contributes to learning and process improvement. 

However, in this work, the variable cost per unit is independent of operating conditions. 

Terwiesch and Xu (2004) consider the tradeoffs between process/recipe changes and learning 

during the experimentation and the manufacturing ramp-up period. Bayus (1995) developed a 

dynamic model of product innovation where the tradeoffs between investments on product 

improvement and process improvement are considered. Carrillo and Franza (2006) developed a 

model to determine the best product development duration and ramp-up time based on the 

investment in product design and manufacturing capacity.  

Most of the literatures dealing with manufacturing ramp-up decisions uses production volume as 

the decision. In fact, Terwiesch and Bohn (2001) suggests the actual decision a manager makes 

during ramp-up is cycle time, which influences the amount of defective parts and, therefore, 

yield; the variable cost is assumed constant regardless of cycle time. However, the choice of 

cycle time can influence the variable cost: cycle time choice leads to difference rate of 

manufacturing problems which not only affects in defective parts, but also interruptions, 

reworks, and maintenance. As cycle time and production ramp-up are decisions which will 

directly affect the variable cost, there are good reasons why these variables should be treated 

more rigorously. 

1.1.2 Product Development 

Krishnan and Ulrich (2001) define product development as the transformation of a market 

opportunity and a set of assumptions of product technology into a product available for sale. 

They also state that decisions regarding product development can be categorized into two types: 
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decisions in setting up a project and decisions within a project. Decisions in setting up a project 

have to do with product strategy and planning, product development organization, and project 

management. These decisions deal with higher, organizational level of product development 

such as the target market for the product or resource prioritization for different projects. 

Decisions within a project, on the other hand, deal with the operational level of product 

development such as design parameters for products, component suppliers, and product launch.  

The decisions regarding product development that a manager will have to consider are 

operational level: the start of new product manufacturing or manufacturing launch. By setting a 

deadline for the product development team to finish product design, the manager essentially 

makes the decision on the product development duration, which will have significant effects on 

the cost and quality of the product design. 

There has been extensive research in the area of tradeoffs between product performance, profit, 

and time to market. The focus of these studies is to evaluate the optimal product launch start and 

the effect of competition from other firms in the market. Bayus (1997), Cohen et al. (1996), and 

Wang (2005) studied the tradeoffs between product performance and product development 

duration and presented the optimal product launch time with respect to exogenous factors such as 

size of potential market, profit margin, and firm’s speed of product improvement. Cohen (2000) 

also added that overly relying on certain standard metrics for product development such as time-

to-market or product performance target can lead to less than optimal decisions. Savin and 

Terwiesch (2005) studied the tradeoff of lost revenue from launch delay from market 

competition and lowering production cost and suggest the existence of an optimal launch time in 

a duopoly. Clark (1989) studied the effect of part sharing strategy and its effect on product 

development performance, profitability, and launch time. Gerwin and Borrowman (2002) give a 

thorough overview of the role firm’s cross-functional integration can play in reducing time-to-

market of new product development. 

Several authors provide qualitative guidelines on how revenues are affected by a delayed versus 

an accelerated launch. Urban and Hauser (1993) suggest that reducing product development lead 

time will increase life-cycle sales at a diminishing rate, and that it will increase overall 

development cost. This suggests the existence of an optimal launch time. Rosenthal (1992) 

showed that moving from actual introduction to the earlier, planned introduction seems to 
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indicate sales increases at an increasing rate. The framework explicitly includes competition—

assumed to begin at the time when sales start to fall—and takes the perspective of the first 

mover. Kalyanaram and Krishnan (1997) suggest a convex-concave relationship between 

product development duration and lifecycle sales, where there is a steep increase in sales with 

increasing duration in the middle, but further increasing (or decreasing) the duration beyond 

certain points will only slightly increase (or decrease) lifecycle sales. Wheelwright and Clark 

(1992) argue that there can be great profit associated with shortened development duration. 

However, overly short lead time does not yield the desired increase in profits, and can even result 

in profit loss. Taken together, all authors emphasize the impact of changes in product 

development duration on a product’s life-cycle sales and profits. 

However, the prior work has not addressed a way to quantify product development performance 

and how it affects manufacturing and finished product quality. There is also a lack the causality 

as to why the increase in product development duration would lead to product performance 

improvement or product sales increase. In order to understand how the product development 

duration decision affect the launch performance, this dissertation will establish the relationship 

between product development duration and performance and how the performance affect 

manufacturing launch and product quality. 

1.1.3 Customer Reaction to Product Quality 

 After a product is manufactured, its finished quality will have impact on revenue and additional 

cost incurred to the manufacturing firm. When the product breaks down or needs a replacement, 

the service and/or the part cost is charged to the manufacturer: the higher the product quality, the 

less likely the chance of it breaking down or being defective. High quality products will also 

create reputation or ‘customer goodwill,’ which leads to high demand and potentially high 

revenue, and vice versa. 

1.1.3.1 Warranty Cost 

In the purchase decision of a product, buyers usually compare characteristics of products of 

competing brands. However, in modern manufacturing, the business is characterized by 

continually changing technology, global markets, nearly identical products due to similar 

technologies and common components, and well informed customers. (Murthy and Djamaludin 
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2002) It is, therefore, increasingly difficult to make decisions on the best product. In this case, 

post-sale factors such as warranty, parts availability and cost, and service and maintenance are 

becoming more important in product choice. Additionally, with rapidly changing technology, 

later generation products tend to be more complex than the ones they replace. Customers are 

often uncertain about new product performance. As such, warranty will play a significant role in 

giving customers insurance they need to purchase the products. 

Firms will need to consider warranty as part of a post-sale service strategy, since it can incur 

additional cost beyond that of the product development and manufacturing. Warranty cost 

typically ranges from 2% to 15% of net sales. (McGuire 1980) As a result, warranty cost has a 

significant impact on the manufacturing business. 

According the a literature review by Murthy (2002), there has been a vast body of literature on 

the topic of warranty cost modeling. Murthy divides the bulk of literature into two types of 

modeling methods: one-dimensional and two-dimensional policy—a one-dimensional policy 

cover one characteristic of the product such as age, while a two-dimensional policy covers two 

characteristics such as age and the amount of usage—although he mentions that one-dimensional 

policy models receive much more attention. The models are constructed to analyze product 

engineering quality feedback and optimal warranty policies. 

In this dissertation, in order to assess the total effect the decisions in product development and 

manufacturing ramp-up have on profitability of the firm, warranty cost will be taken into 

consideration. 

1.1.3.2 Reputation 

Economists have become aware of how imperfect information can cause several characteristics 

of market imperfections. (Shapiro 1982) While much effort has been spent on understanding the 

effect of uncertainty about various prices at which a product is offered (Salop and Stiglitz 1977; 

Wilde and Schwartz 1979), it is relatively minor and unimportant in comparison to uncertainty 

about product characteristics. (Shapiro 1983) 

Uncertainty about quality is a widespread and important feature of markets for most firms’ 

goods. On some products, especially consumer durables, it is virtually impossible for customers 

18 

 



to assess the quality before purchase. Customers, therefore, relies on reputation as a signal for 

product quality. 

Market behavior and product quality interact via the notion of reputation. According to Akerlof 

(1970), if product quality is given exogenously, with price offered only dependent on the average 

product quality throughout the market and high quality items are more expensive to produce, the 

market will eventually be flooded with minimal quality products if customers never learn about 

the reputation of each firm. Since there is no profit in ‘doing more than necessary,’ firms whose 

products are of lower quality will make the most profit as it does not have bad reputation, while 

high quality firms will be forced out of business. In reality, there exists an incentive for a firm to 

make high quality products. High quality product release can improve the reputation of the firm. 

Products that come from the firm with high reputation are generally believed to be of high 

quality, and therefore can be sold at higher quantity or higher price. The firm must be able to 

correctly weigh the cost and benefit of making high quality product. 

While there exist a considerable amount of published papers on topic of reputation, as reviewed 

by Weigelt and Camerer (1988), most deal with reputation in corporate strategic decisions and 

economic signaling game. Only a small part of them deal with the mathematical representation 

of reputation. Out of these, only a few discuss the relationship between product quality, 

reputation, and demand. This relationship is crucial in determining the benefit and cost of 

manufacturing high quality product.  

1.2 Problem Statement 

As the literature review indicated, there is extensive research work on modeling and measuring 

the performance of manufacturing systems and product development during product launch. 

However, when dealing with the concept that product development and manufacturing are 

interconnected, there are only a few papers dealing with this scenario.  

Carrillo and Franza (2006) developed a model to determine the best product development 

duration and ramp-up time based on the investment in product design and manufacturing 

capacity. Using the Cobb-Douglas equation, the constant streams of investments in product 

design and production capacity are translated to design knowledge and production capacity, 

respectively, 
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where  is the rate of increased design knowledge, DI is the product design investment,  

is rate of increased production capacity, PI is production capacity investment, α, β, η, γ are Cobb-

Douglas equation parameters. Product development duration determines the amount of 

investments in design and design knowledge, while ramp-up time determines the investment in 

production capacity and, therefore, production capacity. Production volume is determined by the 

production capacity and demand 
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Profit margin, π, is a function of design knowledge, while sale is assumed to be the same as the 

number of manufactured products. 
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The model proceeds to determine the optimal product development duration by optimizing the 

profit over planning horizon.  

The important conclusion of this literature is that there is a connection between optimal product 

development duration and an optimal ramp-up time. The dissertation will expand upon that result 

by taking a closer look at the causality as to why increasing design knowledge leads to higher 

profit margin and explicitly model that interaction.  

To explicitly model design knowledge, design structure matrix (DSM) has been used in the 

literature to model the product development duration by employing its concept of dividing 

product development into small, interdependent activities (Browning 2001). DSM can model the 

issue resolution process by integrating the concepts of activity iterations and dependencies 

during product development. (Cho and Eppinger 2001) Although there has not been an attempt 

to quantify the product development performance using DSM, this dissertation will extend it to 

achieve that purpose. The review on DSM will be done in depth in section 3.1. 
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The design knowledge has both the cost and revenue implications on profit of product launch—a 

more refined product design leads to fewer manufacturing and customer problems and cost 

decrease, while also leads to higher quality product, demand, and revenue. The effect of design 

knowledge on cash flow of product launch will be treated more rigorously in this dissertation. 

The questions arising from the gaps in prior work are: 

1. What are the optimal product development duration and manufacturing ramp-up during 

launch? 

2. Does including the consideration for product development and customer reaction to 

product quality change these decisions? How? 

3. What are the factors that can affect product development duration and manufacturing 

ramp-up? How? 
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Figure 1-3: Proposed Model of Product Launch Net Revenue 

To answer these questions, a new model of product launch that analyzes the interaction between 

product development, manufacturing and customer reaction to product quality is proposed. Net 

revenue is utilized as a metric to measure performance of decision variables, which are the 

product development duration (or manufacturing launch start), and cycle time ramp-up. 
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As the model in Figure 1-3 proposes, a dynamic interaction among product development, 

manufacturing, and customer reaction exists. The decision about product development duration 

is important in determining production progress when the product is introduced in a facility. 

Depending on cycle time (or manufacturing rate) of the facility, finished product quality is 

determined. The finished product quality affects the reputation of the firm and the demand for 

the product. 

In the subsequent chapters, the mathematical formulation of the model, the dynamic interaction, 

and case studies will be discussed in detail.  In Chapter 2, the mathematical model of product 

manufacturing is explored along with its extension to accommodate linkage to product 

development and customer reaction to product quality. In Chapter 3, the model of product 

development period is discussed. The dissertation will also focus on how the model is used to 

quantify product development performance and how that performance is used in the 

manufacturing model. In Chapter 4, the effect of customer reaction to product quality to firm’s 

revenue is quantified. In Chapter 5, the model will be used to evaluate optimal product launch 

strategies under different product development strategies and manufacturing efficiencies and 

investigate the influences of exogenous factors on the decisions. Insights from the case studies 

will be derived and discussed. Finally, in Chapter 6, concluding remarks and opportunities for 

research that will add to the scope and validity of the model will be discussed. 
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2 Manufacturing Model 

In this section, the detailed mathematical modeling of manufacturing during product launch is 

explored. However, to build the model and correctly measure the desired effects of product 

launch decisions, the metric of product launch performance must be chosen. According to the 

literature, the most prevalent performance metrics are throughput and profit. (Kurawarwala and 

Matsuo 1998; Cohen, Eliashberg et al. 2000; Haller, Peikert et al. 2003; Chen, Yeh et al. 2006)  

The next section discusses the advantages and disadvantages of both metrics and the better one 

will be chosen to represent product launch performance. 

2.1 Throughput versus Net Revenue as a Product Launch Metric 

In the past, manufacturing experts have used the unit of production throughput as a measure of 

product launch performance—especially during manufacturing. During launch, lack of 

experience with new processes presents a choice for manufacturers.  They either operate the line 

at less than its maximum speed and accept the resulting negative impact on throughput, or they 

can force the line to operate near its maximum speed despite the inadequate training or 

experience and accept the increase in manufacturing problems which also produces an 

undesirable impact on throughput. Figure 2-1 indicates this tradeoff.  Therefore, by taking those 

two effects into account, there exists an optimal cycle time which maximizes throughput. 

Reject & 
Rework up

Increase 
Speed

Production 
Volume up

Throughput 
up

Throughput 
down

Throughput

Cycle timeCT  
Figure 2-1: Diagram illustrating an Optimal Cycle Time under Throughput Metric 

However, the ultimate goal of a firm is to maximize profit, and throughput is used as a ‘proxy’ 

for the firm’s profit. While the throughput metric takes into account the loss of production due to 

new manufacturing processes, it entirely neglects the additional costs incurred by yield loss, 

23 

 



additional rework, and more maintenance. This suggests that a more financial metric might be 

more suitable for measuring the performance of launch decisions. 

Reject & 
Rework up

Operating
Cost up

Net 
Revenue 

down

Increase 
Speed

Production 
Volume up

Throughput 
up

Throughput 
down

Net 
Revenue 

up

Net 
Rev

CT Cycle 
time

CT*

 
Figure 2-2: Diagram illustrating a Shift in Optimal Cycle time under Net Revenue 

By considering Figure 2-2, net revenue is a closer proxy to profit than throughput since it takes 

into account the upside and downside of shortening the cycle time. Under net revenue 

maximization, there is additional tension to lengthen the cycle time which may lead to a different 

set of product launch decisions than under throughput maximization. 

2.2 Net Revenue Model of Manufacturing 

The net present value of net revenue of the launch period is defined as  

 
1

( )
(1 )

n
i
i

i

NetRevNPV NetRev
dr=

=
+∑ ,  (2.1) 

where dr is the discount rate per period length, i is the small steady state period within the launch 

period. The net revenue of each steady state period is simply the revenue minus the cost. 

 i iNetRev Rev Costi= −  (2.2) 

To calculate the revenue and cost for each period, the assumptions about operating conditions of 

product launch must be introduced and then the optimization of net present value of net revenue 

can be obtained. 

2.2.1 Model Assumptions 

2.2.1.1 Concurrent Launch 

The model assumes that at the beginning of manufacturing launch, there are two types of 

products, A and B, manufactured at the same time, sharing the line. As the volume of B ramps 
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up, the volume of A is phased out. The model also assumes that production of A is already in 

steady state, while that of B is in transitional period. The production cycle time of A is assumed 

fixed, while the cycle time of B can change over time. However, the cycle time of B can only be 

a multiple of that of A since they are sharing the same line; to vary the cycle time of B, it is 

customary to leave empty slots behind each B to increase the effective cycle time and allow more 

work time instead of slowing down the production line. Therefore, the cycle time of B is simply 

the number of slots it occupies times the base cycle time of A, 

 *Bi i ACT Slot CT= . (2.3) 

2.2.1.2 Manufacturing Event 

Each product is assumed to have a number of defects at the beginning of manufacturing. Each 

defect has the probability of causing a manufacturing event, assumed identical for all defects, 

which is modeled as a function of cycle time; given enough time, a worker may be able to fix an 

error before he has to shut down the line or before the product becomes defective. 

 
( )

Pr (1 )
1 exp

j j
j j

mi

j

A B
defect BCT CT

CT

−
= +

−
+

Δ

 (2.4) 

where j denotes the type of manufacturing event which would result in downtime, rework, or 

rejected part. Note that a typical s-curve defined as in Equation (2.4) looks like:  
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Figure 2-3: S-curve representing manufacturing event probability as a 
function of cycle time 

 
In Equation (2.4), the coefficient A sets the maximum asymptote, while B sets the minimum 

asymptote for the curve. CTm designates the CT that corresponds to (A+B)/2, while ΔCT set the 

‘slope’ of the curve by setting the length over which the change from the maximum to minimum 

asymptote occurs. The reasons s-curve function is employed for the relationship between the 

probability of occurrence and cycle time are: 

1. Pr should approach 1 as CT approaches a small value. There is a physical limit after which a 

line will always fail if it runs any faster. 

2. Pr should decrease as CT increases. As the line runs slower, there is more time for fine 

tuning and careful operation, which results in a lower chance of down event. 

3. Pr should approach a steady state value smaller than 1 as CT  ∞. The benefit of reducing 

the chance of a down event by slowing down the line will be nearly negligible after a certain 

point. There will always be a small random chance that the machine will fail, which is 

unrelated to the cycle time. 

If a product has d defects in it, the probability of a manufacturing event becomes 

 . (2.5) Pr( ) 1 Pr(1 )dd defects defect= −
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As more manufacturing events are addressed, workers gather experience about the events, which 

may lead them to investigate the root cause of the problems and permanently eliminate the 

defects from all subsequent products in the manufacturing line. This process of learning is 

modeled using the cumulative number of manufacturing events, i.e. 

 , (2.6) 1 Pr ( | )*#i i j
j

d d Solve Event event+ = −∑ ji

i

However, this is not the only mode of learning. Even by manufacturing without encountering 

events, there is a probability of improving and eliminating root cause—be it less likely, as 

commented by Li and Rajagolapan (1997). Therefore, equation (2.6) becomes 

  (2.7) 1 Pr ( | )*# Pr( | )*i i j ji
j

d d Solve Event event Solve Volume PV+ = − −∑

where Pr(Solve|Event) and Pr(Solve|Volume) are the probabilities in which the a defect is 

eliminated after a manufacturing event and a finished product, respectively. These probabilities 

can be thought of as learning rates based on manufacturing event and based on volume, and will 

be referred to in that way from now on. 

2.2.1.3 Manufacturing Event Consequences 

When a manufacturing event occurs, the system goes into a faulted state and has to stop 

manufacturing until it is repaired. The part that caused the event may have to be thrown away or 

reworked, or may not suffer any damage at all. 

1. Downtime is the duration in which the manufacturing line remains in a faulted state 

before being repaired. The mean time to repair for each down event during period i is 

 0
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 (2.8) 

 Downtime percentage of the operating time is,  
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where MTTR0 is the initial mean time to repair. Mean time to repair is assumed to be 

learning. Again, the reason s-curve is used to represent learning is because it can be 

described with maximum value, α, and minimum value, β. The learning rate can be 

controlled by ΔCN, while CNm controls where the maximum learning rate occurs. 

2. Rework or reject: if the down event causes the line to manufacture defective products, they 

can either go through to a parallel line for rework, or be discarded as scrap. It is assumed that 

the defective products are found immediately. The rework rate (RW) and the reject rate (RR) 

of each period i are determined by the probability of a down event resulting in each of those 

actions. 
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RR CT
=

=∪  (2.11)  

 where j signifies the type of manufacturing event. 

2.2.1.4 Available Production Time for New Products 

The model assumes that the production line has two types of operation time available. One is 

fixed normal operating time where the target production volumes of A and B are given. The 

other is optional overtime, which allows for some manufacturing flexibility, but has an upper 

bound. The model assigns operating time first to complete the required number of product A, and 

then assigns the remainder of the available time to the production of vehicle B. If the target 

production volume of vehicle B can be produced within the normal operating time available or 

has time left, the remaining normal operating time is considered to be used to produce additional 

vehicle Bs. However, if the target production volume of vehicle B cannot be completed in the 

normal operating time, overtime will be used, but only as needed, to meet the target production 

volume of vehicle B. And finally, if the target production volume of vehicle B cannot be met 

using the allotted overtime, the maximum amount of overtime is allocated to make the product 

and the total number of units produced is calculated. 

First, time needed to make A is calculated from the effective production volume of A 

 
1

Ai
Ai

Ai

TargetPVEPV
RR

=
−

. (2.12) 
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The total time needed to produce vehicle A is 

 * * (1 )Ai Ai AT EPV CT DT= Ai+ . (2.13) 

Therefore, the available time for producing vehicle B is 

 Bi AiAT NormOpTime T= − . (2.14) 

To evaluate whether the available time is sufficient to make the target production volume of 

vehicle B for that period, the effective production volume of vehicle B is calculated from 

available time for production of vehicle B and its cycle time. That is compared to the effective 

production volume of vehicle B needed to meet the target. If the former is larger, it means that 

with the choice of cycle time, the production line will be able to meet the target production 

volume. If the latter is larger, then overtime operation is needed. 

 (1 ), *3600
1

Bi Bi Bi
Bi

Bi Bi

TargetPV AT DTEPV MAX
RR CT

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 (2.15) 

Note that the second amount is multiplied by 3600 because CT has units of seconds, while AT 

has units of hours. The actual time needed to produce vehicle B is then 

 
* (1 )

Bi
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Bi Bi

EPVT
CT DT

=
−

. (2.16) 

Therefore, production volume of vehicle B is 

 * (1 )Bi Bi BiPV EPV RR= − . (2.17) 

2.2.2 Cost Calculation 

Now that all the model assumptions have been stated, the manufacturing cost can be calculated 

Total manufacturing cost for period i consists of investment, material cost, and operating cost. 

 . (2.18) i i iCost InvC MatlC OpC= + + i

i

The operating cost can be further broken down to rework cost, energy cost, maintenance cost, 

and labor cost. 

  (2.19) i i i iOpC RWC EnC MaintC LabC= + + +
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Both energy and labor costs can also be broken down to those costs occurring during regular 

operations and overtime operations. In this model, however, the effect of manufacturing ramp-up 

decisions on manufacturing cost is considered. Therefore, any costs that are unaffected by 

manufacturing ramp-up can be omitted without impacting the results of this study. In this case, 

we assume that the regular operating time is fixed and that regular operation energy cost will be 

ignored. To simplify the model further, overtime labor and energy costs depend only on the 

amount of overtime, and hence are grouped together into a single overtime operation cost. 

 i iOTC OTLabC OTEnCi= +  (2.20) 

Therefore, in this model, the costs of interest for period i can be written as 

  (2.21) i i i i iCost InvC MatlC RWC MaintC OTC= + + + + i

Investment cost is calculated by amortizing the total investment of floor space, tooling, and 

equipment over the entire launch period 
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dr= =

=
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where l = 1 for floor space, 2 for tooling, and 3 for equipment and dr is the discount rate per 

period. 

The amount of overtime needed, OT, is 

 i Bi BOT T AT i= − . (2.23) 

Assuming a fixed unit rework cost CREWORK , unit material cost CMATL, maintenance cost per unit 

time CDT, and overtime cost per unit time COT: 

Rework cost: 

  (2.24) 
2 2
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Material cost: 

  (2.25) 
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Maintenance cost: 
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Overtime cost: 

 *i iOTC OT COT=  (2.27) 

where k denotes the product A and B.  

To calculate effective production volume, downtime, and rework rate, the manufacturing errors 

and interruptions during manufacturing must be modeled. Thus, the concept of manufacturing 

event is introduced to represent the state that the system is not operating correctly. Each 

manufacturing event is caused by a defect in the product and can have consequences such as a 

rejected or reworked part, and a downtime. The probability that a manufacturing event occurs is 

dependent on cycle time; the shorter the cycle time, the higher the event probability. This is 

because it is assumed that workers can solve more events when they can devote more time to the 

problem.  

2.2.3 Revenue Calculation 

The revenue of period i is simply the sum of the products of price, P, and number of products 

sold for both new and old products, S 
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*i ki

k
kiRev S P

=

= ∑  (2.28) 

where k represents the old and new products. Price, P, is a part of the reputation – product 

quality – demand model which will be discussed in 4.3. Price is modeled as a function of 

reputation, R, and production volume, PV, with an assumption that all products manufactured are 

sold, 

 
( )

i i

ki i

S PV
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=
=

. (2.29) 

While the detailed discussion of product selling price will be in 4.3, it is worth mentioning that 

the more delayed the manufacturing launch is, the shorter the time the firm has to build the 

products until they are replaced by a new generation of product, creating less revenue. 

Furthermore, selling price might also decrease with time, reducing potential revenue.  
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2.3 Optimal Cycle Time Ramp-up Search 

From the last section, the mathematical model of how the decision variable—cycle time—affects 

objective function—net revenue—has been discussed in details. However, the goal of 

constructing the model is to determine the optimal cycle time that will maximize net revenue of 

the product life cycle. While the model is divided into small periods of steady state operation 

even during product launch, the performances from previous periods directly impact the system 

state in the later period: the amount of experience at the start of period i depends on the 

experience from each period 1 through i – 1. Since the cycle time choice in each period will 

dictate the amount of experience gathered in that period, this means that each cycle time choice 

from the previous period will influence the optimal cycle time choice for the current one. 

Therefore, this optimization problem is a path-dependent global optimization problem. 

There are a wide range of methods available when it comes to solving a global optimization 

problem. However, due to the path-dependent nature of the problem, many of the methods do not 

guarantee the global optimality of their solutions. Other methods guarantee global maxima but 

are computationally expensive. In this dissertation, multiple dynamic programming repetitions 

are implemented due to the problem being relatively computationally inexpensive. 

The underlying principal of multiple dynamic programming repetitions is to combine dynamic 

programming with a local search algorithm, essentially implementing dynamic programming 

with different initial conditions. In the case of cycle time strategy optimization, the two initial 

conditions are at two extremes: always running full speed and always running at the lowest speed 

throughout manufacturing launch. After the two solutions are obtained, they are compared. If 

they match, the solution is assumed a global maximum, if not, they are local maxima one of 

which can potentially be a global maximum. Additional initial condition in the middle of the two 

solutions is implemented to find if other maxima exist.  All local maxima are compared to 

determine which one is the best. 

2.4 Comparison between Metrics 

To verify the performance difference between throughput and net revenue maximization, the 

model is run twice—each time optimizing on one of the metrics. 
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The weekly target production volumes of the obsolete product (A) and new product (B) are 

shown below. The learning statistics, probability of solving underlying problems given for each 

manufacturing event, Prj(Solve|Event)  is 0.15 and the probability of solving underlying problems 

as more products are produced, Pr(Solve|Volume) is 0.01.  The learning statistics apply solely to 

the production of vehicle B. 

 
Figure 2-4: Weekly Target Production Volumes during Manufacturing Launch 

Once the data shown in Figure 2-4 is input into the model and processed. The optimization result 

from maximizing throughput and net revenue is shown in Figure 2-5. 
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Figure 2-5: Comparison of Optimal Ramp-up Strategies for Throughput and Net Revenue 

In Figure 2-5, the horizontal axis represents the time of after manufacturing launch in weeks, 

while the vertical axis represents the cycle time choice in seconds. By maximizing net revenue, 

the model suggests that manufacturing launch starts out with cycle time = 240 s (4 slots; 4*60 s 

= 240) for 3 weeks, speeding up to 180 s for 6 weeks, to 120 s for 4 weeks, and to full speed in 

week 14. On the other hand, maximizing throughput suggests that launch starts at 180 s for 4 

weeks and speeding up to 120 s for 5 weeks, and finally to full speed in week 10. 

Based on the optimal strategy results, to maximize net revenue the operator should ramp-up 

cycle time at a slower rate than to maximize throughput. The net revenue of the model using 

throughput maximization is $1,908,000, while that of the model using net revenue maximization 

is $1,990,000, which is approximately a 4% increase. The reason for this is shown below. 
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Figure 2-6: Weekly Net Revenue Comparison between Two Metrics 

In Figure 2-6, again the horizontal axis represents the weeks since manufacturing launch, while 

the vertical represents the weekly net revenue as a result of cycle time choice in Figure 2-5. 

Slower cycle times at the beginning of launch helps the producer lower the amount of 

manufacturing events which results in correspondingly lower costs up into week 10, at which 

point both metrics suggest running at the same cycle time. Maximizing throughput causes the 

line to be run faster resulting in additional manufacturing events prior to week 10.  While this is 

costly, it allows the line operator to gather more experience leading to fewer manufacturing 

events from week 10 on. Due to discount rate effect, however, the late cost saving does not offset 

the early cost increase. Therefore, net revenue maximization, which essentially suggests that the 

producer avoid early costs and even if that means delaying some forms of manufacturing 

learning results in an improved financial outcome. 

To illustrate the benefit of using net revenue as opposed to throughput, sensitivity analysis of the 

performance difference is performed with respect to changes in learning rates and profit margins. 

In this analysis, the variation on learning rates is performed simultaneously on all types of 

manufacturing events. Recall equation (2.7), all Prj(Solve|Event) are set to the same value 

denoted by Pr on the plots. 
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Figure 2-7: Net Revenue Difference under Different Profit Margins and Learning Rates 

In Figure 2-7, the improvement in net revenue using net revenue maximization rather than 

throughput maximization is shown to be inversely proportional to product profit margin. This is 

because as profit margin grows, throughput becomes an increasingly accurate indicator of launch 

profitability. Net revenue difference is also inversely proportional to learning. Since higher rates 

of learning mean less frequent rework, rejects, and downtimes, the costs of which the throughput 

metric does not consider. As learning increases, these costs decrease and therefore the accuracy 

of the throughput as a proxy metric for launch profitability increases. Note that there are 

discontinuities in slopes of the net revenue difference. This is because, while throughput 

maximization always suggests the same cycle time ramp-up strategy regardless of profit margin, 

net revenue maximization suggests different ones. The higher the profit margin, the faster the 

cycle time ramp-up net revenue maximization suggests and the closer it is to that of throughput 

maximization. Faster ramp-up creates less difference between net revenue of the two metrics and 

therefore, smaller slope. 
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Figure 2-8: Net Revenue Difference % under different Profit Margins and Learning Rates 

From Figure 2-8, the net revenue difference percentage, which is the ratio of net revenue 

difference and net revenue of the throughput metric case, is also inversely proportional to the 

learning and profit margin. However, the exponential shape of the curve is due to combination of 

the effects of the quantity of net revenue of throughput metric and the quantity of net revenue 

difference when the profit margin changes. For example, when profit margin decreases, the net 

revenue difference increases, but the net revenue of throughput metric decreases. Therefore, the 

net revenue difference—net revenue difference divided by the net revenue of throughput 

metric—grows exponentially. 

While net revenue difference percentage may seem minimal especially for fast learning rates and 

high profit margins, it is quite significant under low profit margin and low learning rates. For 

example, an automotive firm producing high-volume, entry-level vehicles usually employs 

matured technologies (low learning rate) and sells them at 3% – 5% profit margin (de Weck, Suh 

et al. 2003). It would be possible for the firm to make as much as additional 10% net revenue 

from such products, which can be substantial. 

2.5 Manufacturing Model Extension 

Thus far, the net revenue model has the capability of evaluating the performance of 

manufacturing facility during manufacturing launch. It considers neither impact of product 
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development nor customer reaction to product quality on net revenue and on the optimal 

manufacturing launch path. This section will discuss the extensions needed for the model to 

make that connection. 

The first step towards extending the model is to identify the specific parameters within the net 

revenue model which should be impacted by product development and customer reaction to 

quality.  The feature that is common to all of these activities is the issues/defects.  Defects impact 

the manufacturing launch path through their impact on rework, rejects and downtimes and in turn 

through the costs that are affected by these variables.  Defects also impact product quality and 

consequently customer reactions, which in turn impact willingness to pay, vehicle price and thus 

firm revenues.  Finally, the number of issues, and therefore the number of issues are a function of 

the product development strategy. While the concept of linking these phases of a vehicle project 

life by tracking the impact of issues/defects is clear, representing the details of the interactive 

effects can be complicated.  

2.5.1 Latent Issues 

During product development after the prototype is built, the data on number of problems 

regarding various aspects of products are collected. In automotive industries, these are called 

latent issues, usually with the units of issues per thousand vehicles (IPTV). The number comes 

from a multitude of tests done on a few vehicles, which is then extrapolated to IPTV number. As 

product development progresses, this number gradually decreases, representing the improvement 

in the product design. 

Although one would like to believe that this number would reduce to zero before the product 

design is transferred to be manufactured in a facility, this is not realistic in any complex product 

with a combinatorial number of potential failure modes. Due to the complexity of the product 

and the number of components in the final product, product development cannot progress until 

the product is completely issue-free. However, the product development duration decision does 

have a significant impact on the number of issues entering the manufacturing process as well as 

the final product quality. Thus, the issue is determining when to stop finding and solving 

problems. 
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Due to variations in product manufacturing, latent issues may exist in some products and not in 

others of the same product design. The issues that exist in a product are defects. Once in the 

manufacturing facility, defects can manifest themselves as manufacturing events. The higher the 

number of latent issues, the higher the probability of manufacturing events. Defects that caused 

manufacturing events are eliminated. However, while the defect itself is also remedied, only 

sometimes are the underlying causes discovered and fixed. Only after the root cause of a defect 

is solved will the defect be permanently eliminated from all subsequent products. 

Some latent defects, however, will remain in the product without causing manufacturing events. 

These defects may manifest themselves after the product is subject to usage, thus impacting 

customer satisfaction and the reputation of the firm. The effects of latent issues on product 

development, manufacturing, and customer reaction are mapped in  

Figure 2-9 
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Figure 2-9: Latent Issues Manifestation and Elimination in Product Launch 
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2.5.2 Bridging Product Development and Manufacturing 

Now that the effect of latent issues has been mapped out throughout a product lifecycle, the 

relationship between the amount of latent issues and its effect must be mathematically defined. 

In section 2.2.2, the model implicitly assumes that manufacturing events appear randomly with 

no underlying cause; through the concept of defects and their relationship to latent issues, 

manufacturing events can now be related to the product development strategy. 

For each product in a manufacturing facility, latent issues that exist in it is are defined as defects, 

therefore the number of defects per product in the first week of manufacturing is 

 . (2.30) 1 Pr( )d issues defects N= → 1∗

i

i∗

where N1 is the latent issues at manufacturing launch (period 1). Since only a fraction of latent 

issues are inherited as defects in each product, it is impossible for the ones that are not present to 

be eliminated from the product design. Therefore, the defect elimination process through 

learning in equation (2.7) becomes 

 . (2.31) 1 Pr ( | )*# Pr( | )*i i j ji
j

N N Solve Event event Solve Volume PV+ = − −∑

where Ni is the number of latent issues in period i. And for each period i, the number of defects 

per product becomes 

  (2.32) Pr( )id issues defects N= →

2.5.3 Bridging Manufacturing and Product Quality 

When a manufacturing event interrupts a process, the station is temporarily shut down and 

attending workers investigate and solve the event. The model assumes that after the event is 

eliminated, so is the defect that causes the event. Therefore, the number of defects left in the 

finished product is 

 fi id d events= −  (2.33) 

The defects eliminated are specific only to the one product that causes manufacturing event, 

which means the same defect in other products can still cause an event. However, there is a 

probability that the workers or supervisors investigate the problem, understand the root cause, 

and make changes to the original product design so that the defect is permanently eliminated 
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from all subsequent products. Indeed, subject to resource constraints, this is common practice 

during product launches. 

The number of defects in the finished product is an indicator of product quality, which directly 

influences reputation of the firm and therefore the demand for the product. The product quality 

will also determine the number of product failure and therefore the warranty cost incurred to the 

firm.  

On the cost side, warranty is the cost incurred to the manufacturing firm when the purchased 

products fail, needing repairs or part replacements. The number of product failures, or faults, of a 

product manufactured in period i over the warranty period is directly proportional to the number 

of defects in finished product and failure rate function. 

 ( , )i fiF F d b=  (2.34) 

where b is the failure rate function. By assuming that all faults have an average servicing/part 

replacement cost, CWARR, the warranty cost per period of manufacturing in period i is 

 *i WARR i iWarrantyC C F PV= ∗  (2.35) 

Therefore, the total cost per period equation (2.18) becomes 

  (2.36) i i i iCost InvC MatlC OpC WarrantyC= + + + i

fi

On the revenue side, finished product quality in each period will influence the firm reputation, 

and the product selling price is influenced by the reputation. 

 
( )

( )
i

ki k i

R R d

P P R

=

=
 (2.37) 

Therefore, the total revenue for manufacturing period i is 

 
2

1
i ki

k
kiRev P PV

=

= ∗∑  (2.38) 

Both reputation and warranty will influence the net revenue, the metric for product launch 

performance. Incorporating these effects into the model will have an impact on the decisions. 

The relationship between them will be discussed in details in Chapter 4. 
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3 Product Development Model 

Now that the number of latent issues has been identified as the connection between product 

development and manufacturing, the relationship between product development duration and its 

relationship to latent issues will be explored.  

While the scope of product development as defined in the literature usually involves “the 

transformation of a market opportunity and a set of assumptions of product technology into a 

product available for sale,” (Krishnan and Ulrich 2001) in this dissertation, product development 

is the process in which the product concepts are developed, tested, and validated, but before the 

product goes through manufacturing launch process. This includes the process of building 

prototypes to verify concepts and manufacturing processes, which usually takes place on 

different facilities than the intended production line. 

The number of latent issues indicates the amount of problems on a product design that has yet to 

be fixed. In the beginning of a project, a product design has a multitude of requirements it has to 

satisfy. As product development progresses, reworks are made to the original design to correct 

part requirements or to accommodate new ones from downstream activities, solving latent issues. 

Assuming that the number of engineers on a product development project is constant, product 

development duration will have implications on cost and performance. A short product 

development duration allows for inexpensive product development and faster release of the 

product, allowing that product to capture more of the market and provide an earlier revenue 

stream, albeit at the cost of having a lower product quality, and vice versa. To fully understand 

the tradeoff within product development itself and its implication on product launch as a whole, a 

model of the relationship between duration, cost, and product quality is needed. 

Browning et al. (2006) provided an excellent review of various modeling concepts of the process 

of resource management, scheduling, and sequencing of product development activities. Some of 

the most important methods are PERT/CPM (Project evaluation and review technique/critical 

path method) and DSM (design structure matrix). These methods share the same principle of 

modeling product development as a network of activities. PERT/CPM maps out all the 

dependence between activities, along with the duration required for the task. The critical path is 
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then determined by the longest path from the beginning to finish. Activities not on the critical 

path are called ‘floating’ and can be delayed without affecting the project duration. PERT/CPM, 

however, cannot model rework generated by other activities. 

The literature review on product development modeling indicates that DSM is a mathematically 

rigorous method of modeling product development duration, latent issue elimination, and cost. 

DSM has been used extensively in various industries such as the pharmaceutical, automotive, 

and semiconductor industries. (Eppinger, Whitney et al. 1991; Smith and Eppinger 1997; 

Sullivan, Griswold et al. 2001; Browning and Eppinger 2002; Yassine and Braha 2003) 

Throughout this chapter, the background of DSM, its application to product launch model, and 

the effect of integrating product development consideration into product launch decisions will be 

discussed. 

3.1 Design Structure Matrix Modeling 

The design structure matrix (DSM) approach has been used extensively to model the cost and 

product development duration of product development activities. A DSM displays the 

relationships between interdependent components of a system using matrix representation for 

easy interpretation and analysis. A DSM is a square matrix with identical row and column labels. 

In Figure 3-1, elements are represented by the shaded elements along the diagonal. An off-

diagonal mark signifies the dependency of one element on another. For example, entry (row A, 

column B) shows that element A is dependent on information from element B, and entry (row E, 

column A) shows that element E is dependent on information from element A. 

A       B       C       D      E  

A 0.2    

0.4 B 0.4  0.7 

  C 0.1  

 0.5  D  

0.2   0.9 E 

Element A 

Element B 

Element C 

Element D 

Element E 

 

Figure 3-1: Example DSM 
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According to a review by Browning (2001), there are mainly two categories of DSMs: static and 

time-based. Static DSMs represent system elements existing simultaneously, such as components 

of product architecture or groups in an organization. In time-based DSMs, the ordering of the 

rows and columns indicates a flow through time: upstream activities in a process precede 

downstream activities. 

Static DSMs can be further broken down into component-based and team-based. Component 

based DSMs are used to model system architectures based on components and their 

relationships. Team-based DSMs are used to model organization structures based on groups and 

their interactions. 

Time-based DSMs can also be broken down into activity-based and parameter-based. Activity-

based DSMs are used to model processes and activity networks based on activities, information 

flows, and their dependencies. Parameter-based DSMs are used to model low-level design 

decisions and parameters, systems of equations, subroutine parameter exchange, etc. 

Since the implications of product development duration on product development cost and 

performance are to be modeled, an activity-based DSM is employed. However, activity-based 

DSMs are mainly used to predict the cost and duration of product development without any 

indication of performance. Therefore, modifications to normal DSM methods are made so that it 

can predict the performance as well. 

3.1.1 Activity-based DSM 

In this type of DSM, the product development process is broken down into various activities. 

Model entries represent the information dependence between activities. The duration of an 

activity is used to model uncertainty and complexity of the activity. Precedence is used to 

determine relative priority of the activities. Iterations are modeled to predict the patterns of work 

progression and rework based on the exchange of information between activities. 

3.1.1.1 Activity Duration 

The model uses the triangular probability distribution to represent the characteristic of activity 

duration. For each activity, there are three estimated durations—optimistic, most likely, and 

pessimistic—for the duration of one execution. The duration is the time between the start and 

44 

 



end of the activity—even though the activity may iterate more than once afterwards. Once the 

activity needs rework, its duration decreases with each rework. The model uses the Latin 

Hypercube Sampling (LHS) method to incorporate the uncertainty of the expected duration of an 

activity based on the three estimated durations. (Cho and Eppinger 2001) Using the optimistic 

and pessimistic values as two extremes for the distribution, the sampling algorithm divides the 

range between them into N pieces of equal probability. The algorithm then randomly samples the 

duration from the pieces. 

3.1.1.2 Precedence Constraints 

It is assumed that the information flow between activities occurs either at the beginning or at the 

end of an activity. Based on this observation, the information flow can be defined as the case that 

the activity requires final output information from the upstream activity to begin its work. It is 

translated to a “finish-to-start” precedence constraint between two activities.  

The DSM is used to document these information flows and precedence constraints by having the 

most upstream activity in the first entry, followed by other downstream ones until the last 

activity. In the precedence constraints matrix entries, PC(i, j) = 0 if activity j does not need 

information from activity i, and 1 if it does. 

3.1.1.3 Iteration 

Cho and Eppinger (2001) defined iteration as the repetition of activities to improve the 

development process. Here, iteration is referred to as rework caused by other activities without 

including repetitive work within a single activity. The model assumes that planned rework of an 

activity is generated due to: (1) change of inputs when other activities are reworked or (2) failure 

to meet the established criteria. 

To generate iterations, the model uses rework probability, rework impact and the learning curve. 

Rework probability is a measure of the chance that an activity generates rework. RP(i, j) 

represents the probability that activity i does rework because of the failure of activity j for i, j = 

1, …, n. In the case of i < j, it represents the feedback rework; failure of downstream activity j 

caused the rework in upstream activity i. In the case of i > j, it represents the feedforward 

rework; downstream activity i needs to do since upstream activity j has generated new 

information after it has reworked. 
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Rework impact is a measure of the strength of dependency between activities. RI(i, j) represents 

the percentage of activity i to be reworked when rework is caused by activity j for i, j = 1, …, n. 

Rework impact is assumed to be constant in each iteration. 

The learning curve represents the improvement of activity duration and cost when it repeats. It 

represents the percentage of the duration or cost from kth time when activity i reworks for the 

k+1th time. The model assumes that the activity duration and cost decrease in each repetition 

until it reaches the minimum percentage of original duration when activity i does the same work 

repeatedly. Thus, rework amount is calculated as the original duration multiplied by the rework 

impact and learning curve to the power of the number of repeats (with a preset minimum). Figure 

3-2 shows the rework probability and impact for sequential iteration using the DSM 

representation, and Figure 3-3 illustrates the learning curve. 

 
Figure 3-2: Rework Probability and Impact Matrices. (Cho and Eppinger 2001) 

 
Figure 3-3: Learning Curve Effect on Activity Duration. (Cho and Eppinger 2001) 

Now that DSM activity durations and costs and rework generation mechanism required to 

calculate reworks during product development have been defined, DSM discrete event 

simulation can be utilized to generate product development duration and cost. 
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3.1.2 DSM Simulation 

In DSM discrete event simulation, events trigger state transitions and time advances in discrete 

steps by the time elapsed between events. The model uses different activity distribution in each 

simulation run which are initially sampled using the Latin Hypercube Sampling method. (Cho 

and Eppinger 2001) With these activity durations, it determines the first state transition (first 

activity to finish from the last state) and calculate the additional duration, after which it generates 

the next state by scanning all activities for required reworks and determines the active activities. 

It assumes that an activity can begin to work as early as possible when it has all the necessary 

inputs from upstream activities. 

In this model, a state transition is triggered by the completion of an activity. Thus, when any 

active activity in the current state q is completed, the model makes a transition to the next state 

q+1. The duration of state q (q = 0, 1, 2, …) is defined as the minimum remaining duration of 

active activities in the state. Before making the transition, the model subtracts the duration of the 

current state from the remaining durations of all active activities. If all the remaining activities 

are completed (remaining durations are all zero), a simulation run is complete and the product 

development duration is calculated as the sum of all durations. After a user-defined number of 

simulation runs, the probability distribution of product development duration and cost can be 

displayed. 

The simulation steps follow closely the work by Cho and Eppinger (2001), which can be 

summarized as follow: 

Step 1: Model sets initial conditions, setting all activities to incomplete. 

Step 2: Start unfinished activities that has all information needed from upstream activities. 

Step 3: Sample the activity cost and time. 

Step 4: When activity in progress is finished, add activity cost and duration to the total values 

and generate rework impact on other activities based on rework probability matrix. 

Step 5: Repeat 2-4 until termination conditions are met. 

Step 6: Report activity cost.  
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The termination condition is set to the completion of all activities. The simulation can then report 

the distribution of cost and duration when product development is completed. 

3.2 Quantifying Product Development Performance and Cost 

In section 2.5, the extension of manufacturing model to include product development and 

product quality is discussed. In particular, the number of latent issues is used as a connection 

between product development and manufacturing. The number of reworks is chosen as a DSM 

model output to represent the number of latent issues because of the difficulty with directly 

modeling the number of latent issues during product development.  

Direct testing for latent issues can be an expensive, difficult and time consuming process, 

especially for complex product designs with multiple components. Therefore, the information 

may not always be readily available throughout different periods in product development. 

Number of reworks, on the other hand, can be easily modeled and generated throughout product 

development. It is also a reasonable indicator of latent issues because every time a rework 

occurs, it is assumed that some latent issues are eliminated—a hypothesis that will be proven in 

section 3.2.2. 

In modeling and predicting product development duration and cost, activity-based DSM discrete 

event simulation generates the results based on activity cost and duration distributions. The 

simulation proceeds until all activities are completed, signifying that all latent issues are solved.  

By itself, the process of latent issues elimination during product development may continue until 

all issues are eliminated. However, market pressure and scheduling problems may force the 

product development process to be finished early at a set time rather than until its completion. To 

model the duration limit, some modifications in simulation algorithm have to be altered. 

3.2.1 Modifications to DSM Simulation 

The modification is on the termination conditions of the simulation. In the all previous works 

regarding DSM simulation, the termination condition is that all activities are completed, since 

DSM simulation was utilized mainly to predict the duration and total cost of product 

development. In this model, the termination condition is a product development duration limit, 

since we would like to get an insight on how the decision variable—product development 
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duration—affects the outputs of interest—product development cost and performance (number of 

latent issues). The simulation is also allowed to run until completion once to measure the total 

rework needed. Once the time counter reaches a specified duration, the simulation is forced to 

stop. In addition to the modified termination conditions, a new feature is added into the 

simulation step 4 to count the number of rework events. The modified simulation steps are: 

Step 1: Model sets initial conditions, setting all activities to incomplete. Number of rework 

events = 0. 

Step 2: Start the earliest unfinished activity. 

Step 3: Sample the activity cost and time. 

Step 4: When activity in progress is finished, add activity cost and duration to the total values 

and generate rework impact on other activities based on rework probability matrix. 

Step 5: Number of rework events increases by 1. 

Step 6: Repeat 2-5 until termination conditions are met. 

Step 7: Report activity cost.  

 Basically, every time an activity is finished, the rework counter number goes up by 1. The 

termination condition changes from product development duration = 20, 40, …, 580 days. At the 

end of the simulation, the model reports both the accumulated activity cost and number of 

rework events. Because this is a simulation, it has to be run for several repetitions in order to 

predict reliable results. Therefore, the number of rework events is the average over the total 

number of simulation runs. The difference between the number of total rework events needed 

and the number of rework events at any duration is called latent rework events. Figure 3-4 shows 

the average number of latent rework events over 5000 repetitions for different product 

development durations. 
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Figure 3-4: Average Number of Latent and Product Development Duration 

3.2.2 Establishing Duration – Latent Issues – Cost Relationship 

To show that the number of rework events is a good modeling proxy for the number of latent 

issues, a correlation between these factors must be established. A correlation test between the 

number of rework events generated from DSM simulation and latent issues data during product 

development using time-series data of number of latent issues of a midsize vehicle launch 

program was conducted.  This data is presented in Figure 3-5. It is important to note that the 

product development duration = 0 does not correspond to the actual beginning of the concept 

design of the product; it actually corresponds to the first time the number of latent issues in 

product design is tracked through integration testing and thus most closely corresponds to the 

completion of first integrated prototype. 
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Figure 3-5: Number of Latent Issues (per 1000 Products) of a Midsize Vehicle Program during Product 

Development 

Using linear regression, the result also shows a linear relationship between the number of rework 

events and latent issues. 

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.940221752
R Square 0.910834682
Adjusted R Square 0.877501349
Standard Error 953.8186818
Observations 13

Coefficients Standard Error t Stat P-value
Intercept 0 #N/A #N/A #N/A
X Variable 1 56.07780334 3.268337229 17.1579 8.28E-10  

Figure 3-6: Latent Issues – Number of Rework Events Linear Regression Result 

The regression result in Figure 3-6 shows a strong correlation between latent issues and number 

of events with high R-square value and good t-statistics. Since t-statistics represent the ratio of 

standard errors to the coefficient of the regression, large t-statistics show that the curve fitting is 

highly accurate. From this result, a linear equation between the latent rework events and latent 

issues can be written as 

 ( ) # ( )Latent Issues t k latent rework t= ∗ . (3.1) 
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where k is the average number of latent issues solved for each rework. In this case, Equation 

(3.1) becomes  

 ( ) 56 # ( )Latent Issues t latent rework t= ∗  (3.2) 

The DSM model can also report the cumulative cost at each product development duration.  The 

result is illustrated below 

 
Figure 3-7: Product Development Labor Cost, Latent Issues, and Product Development Duration 

As illustrated in Figure 3-7, determining the duration of the product development activities 

involves a tradeoff between the product development cost and the number of latent issues.  This 

relationship is the basis for understanding the impacts of varying product development duration 

on both manufacturing costs and eventual product quality, warranty and reputation. Having a 

method that fully quantifies these tradeoffs is essential. 

3.3 Linking Product Development and Manufacturing 

 The extension to manufacturing model and how latent issues from product development affect 

manufacturing has been discussed in section 2.5. Furthermore, the relationship between product 

development cost, latent issues, and product development duration has also been established in 

the previous section.  These two modeling approaches can be combined in order to be able to 

explore the affects of product development duration on net revenue considering both the cost 

incurred during product development and the impacts on manufacturing costs during ramp-up. 
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The product development cost will directly affect net revenue calculation by increasing the cost: 

the longer the duration, the higher the cost, as shown in Figure 3-7. 

The importance of product development costs is also magnified by the time value effect—since 

product development is the first process of product launch, the cost incurred here is more 

important than costs that occur later. This will lead to a faster product development to save 

product development cost. However, faster product development leads to higher latent issues at 

the beginning of manufacturing which will drive up manufacturing cost. Therefore, the latent 

issues effect will lead to slower product development duration to save manufacturing cost. These 

two tensions will create an optimal duration at which the increases in product development cost 

and manufacturing cost balance out. 

There is also an issue of time value of cash flow involved when integrating product development 

into product launch. With the manufacturing model alone, cash flow amortization takes the 

beginning of product launch as the first day of manufacturing launch. With a new assumption 

that manufacturing launch starts immediately after product development is finished, however, 

different product development durations will lead to different manufacturing launch dates. This 

will lead to a biased comparison favoring longer product development durations because of a 

false assumption of time of cash flow. From this point on, therefore, the reference time for 

comparing net present value of net revenue is the beginning of product development. 

Due to this reason, the net revenue calculation must now take into account the shift in reference 

time and additional product development cost, so equation (2.1) becomes 

 ( ) ( )1

1( ) ( )
1 1

n
i

PD i c c
i

NetRevNPV NetRev NPV NetRev
dr dr

PD durationc
Period duration

+
=

= =
+ +

=

∑
 (3.3) 

Essentially, each net revenue stream from period i is amortized as if it is from period i + c, where 

c is the amount of periods shifted by the product development duration. 
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Figure 3-8: Product Launch Net Revenue versus Product Development Duration  

 
Figure 3-9: Optimal Cycle Time Ramp-up when Product Development Duration = 300 Days 

Figure 3-8 shows the relationship between the total 5 year net revenue and the product 

development duration.  The optimal product development duration is 300 days. It is important to 

note that the net revenue value plotted is corresponding to the optimal ramp-up for each duration. 

The maximum net revenue is $283 million. Shorter product development duration increase the 

revenue by the effect of time value of money and manufacturing and selling more products but 

suffer even more additional warranty cost, resulting in lower net revenue. Longer product 
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development results in decreased warranty cost, but suffers from shorter manufacturing time and 

time value of money. 

Figure 3-9 shows the corresponding optimal cycle time ramp-up for product development 

duration = 300 days compared with the optimal ramp-up without considering product 

development. When considering only manufacturing cost alone, the cycle time in the first week 

at 240 s and stays constant for 4 weeks. In week 5, the cycle time speeds up to 180 s, and stays 

there for 5 weeks. It speeds up again to 120 s in week 11, staying there for 3 week until reaching 

full speed in week 14. However, with the consideration of product development cost, the cycle 

time stays at 240 s for 5 weeks, and at 180 s for 6 weeks. It is important to note that in the 

manufacturing model only case, the number of latent issues input was assumed to be the same as 

the number of latent issues that would remain after a 300 day product development duration (4 

issues per product) so that both cases have the same number of latent issues at manufacturing 

launch. However, explicit consideration of product development activities leads to different 

ramp-up strategies even with the same amount of latent issues at manufacturing launch, learning 

rates, product price, and costs (other than manufacturing cost). This is because the inclusion of 

product development cost increases the tension on the cost side and pushing the system to run 

slower to avoid high manufacturing cost at the beginning of manufacturing launch. 
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4 Customer Reaction to Product Quality 

Product development and production launch strategies are not just about balancing the costs in 

these two activities, but also about considering their impact on final product quality and the 

resulting market acceptance of the product and the reputation of the firm and its effect on later 

products. Chapters 2 and 3, the production launch model and its extension to product 

development/DSM modeling, deal mainly with the interaction between the cost and product 

quality up to the time it is manufactured; the effect of product quality on cash flow once the 

manufacturing is finished has not yet been taken into consideration. Up to this point, the 

underlying assumption has been that regardless of product quality, all products made can be sold 

at a set price and do not incur extra cost. 

While this assumption helps simplify the model and allows for easier results validation, it is 

highly unrealistic. Products do break down and require service after they are sold, and the 

demand and price a customer is willing to pay for the product depends highly on the product 

quality. In this chapter, the cost and value of product quality after the product is sold is explored. 

4.1 Quantifying Product Quality at Customer 

In typical customer reaction models, product quality is the quantity that measures the satisfaction 

of the customer about the product and affects the cash flows during the lifecycle of the product. 

The number of latent issues has been used to assess the product quality throughout different 

phases of product launch. However, for the customer, the notion of product quality differs 

slightly from the idea of product quality during product development and manufacturing. Here, it 

is a more physical concept: something a customer is able to observe. During product 

development and manufacturing, latent issues/defects are potential problems which may manifest 

themselves; in finished products, potential problems do not affect customer satisfaction as long 

as the customer cannot observe them. This notion of product quality has been used in automotive 

review magazines such as The Consumer Reports where the product failure rate is observed.  

There may be other aspects of product quality that affects the customer satisfaction such as 

added features or aesthetically pleasing designs. The cost of these aspects, however, cannot be 

easily associated with the product launch decisions considered in this work, such as product 
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development duration and manufacturing ramp-up. It is difficult to approximate the change in 

customer reaction, the additional cost, and the additional duration an extra feature would incur. 

Therefore, the notion of product quality in this dissertation will reflect the failure rate of the 

product. 

There are multiple works available on modeling the failure rate of a product; most of these are 

warranty cost model studies where a failure rate is established to calculate the total amount of 

expected failures during a warranty period to estimate costs. The most prevalent failure rate 

distributions in the literature are exponential and Weibull distribution. These function forms are 

provided in equation (4.1). 

 1

Exponential
( )

Weibull
k

k
b t k t

λ λ

−

⎧
⎪= ⎨ ⎛ ⎞

⎜ ⎟⎪
⎝ ⎠⎩

 (4.1) 

where b(t) is the failure rate according to the distribution function.  

An exponential distribution uses a constant rate of failure, usually associated with randomly 

occurring failures. A Weibull distribution is normally used because of its flexibility; its shape 

and scale varies with two parameters, λ and k. The shape, in particular, is controlled by k. If k > 

1, the failure rate is monotonously increasing with respect to time, signifying failures associated 

with aging and wear.  If k = 1, the failure rate is constant, and the distribution becomes the 

exponential distribution. If k < 1, the failure rate is monotonously decreasing with time, 

signifying an infant mortality behavior of failure. The scale parameter, λ, controls the relative 

spread of the distribution: the bigger λ is, the more spread out the distribution becomes. 

Due to its flexibility and overall being the most prevalent throughout the literature, Weibull 

distribution will be used to model the rate of product failure that the customer can observe. 

If all hidden defects are assumed to have the same rate of failure, and that a fault is caused by 

only one hidden defect (no compounded fault), then the failure rate of a product containing d 

defects is 

 
1
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kk tb t d

λ λ

−
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 (4.2) 
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Figure 4-1: Weibull Distribution of Failure Rate for Various k when λ = 1 

 
Figure 4-2: Weibull Distribution of Failure Rate for Various λ when k = 1.5 

Figure 4-1 shows the effect of k on the Weibull distribution failure rate. When k<1, the failure 

rate slope is decreasing with time, when k=1, the failure rate slope is constant, and when k>1, the 

slope is increasing. Figure 4-2 shows the effect of λ on the Weibull distribution failure rate: the 

smaller λ is, the faster the failure rate increases. It is found Weibull distribution with k = 1.5 and 

λ = 1 fit the automotive failure rate data well, generating approximately 5 faults over 5 year 

period. (Lawless 1998) These parameters will be used for subsequent analyses. 
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Now that the quantity that represents product quality to customers is modeled from defects in 

finished products, it will be used to model the effects of warranty and reputation.  

4.2 Warranty Cost Model 

Warranty costs are directly related to the number of failures observed in the vehicle during the 

warranty period. This can be calculated as the integral of the failure rate over the warranty 

period. Applying the Weibull distribution from equation 4.2 for the failure rate of a product with 

d defects, the expected number of failures over time T is simply the, 

 
0

(# ) ( )
T TE Faults b t dt d

k

λ
⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫  (4.3) 

where T is the warranty period. It is important to note that while not all faults are covered by 

warranty, all faults affect customer perception and the firm’s reputation. 

 
Figure 4-3: Expected number of faults over product age when d = 0.6, k = 1.5, and λ = 1 

Figure 4-3 shows the accumulated number of faults with respect to product age. This result is 

consistent with automotive industry data. In reality, each fault has a different cost associated with 

it. To keep the model simplified, however, all faults are assumed to have the same warranty cost.  

 * (# )WarrantyCost c E Faults=  (4.4) 
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Figure 4-4: Total Warranty Cost over Product Lifecycle as a Function of Product Development Duration 

Figure 4-4 shows the total warranty cost for all products sold over the lifecycle (5 years) is 

decreasing when product development duration is longer. It is this additional cost that extends 

the optimal product development duration when warranty cost is considered. Note that the rate of 

warranty cost reduction is slowing after 400 days because the rate of latent issues elimination in 

product development past 400 days is low; there are small amount of latent issues to be dealt 

with and therefore small amount of issues to be eliminated. It is also important to note that the 

total warranty cost is slightly smaller than net revenue shown in Figure 3-8. Since Warranty 

Week claims warranty cost is ~2.5% total revenue (Arnum 2006), while the model assumes 3% 

profit margin with warranty included, the assumption that the $100 warranty cost per claim is 

consistent with industry data.  

4.3 Reputation Model 

Up until this point, the model has been addressing the effects of product development duration 

and manufacturing ramp-up to product quality, cost, and revenue, yet the effect of product 

quality on revenue has not been addressed. Revenue has always been part of the equation to 

calculate net revenue, but it stays constant regardless of product quality. However, product 

quality also impacts the market for the vehicle and thus its sales volume and selling price, in 

other words, the firm’s revenue. 

While customer demand for a product depends highly on the product quality, the notion of 

quality can be difficult to perceive in some products. In this case, customers rely on reputation as 
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a signal for product quality. Customers trust that a firm with a reputation for producing high 

quality products will in fact continue to manufacture high quality products. These firms can also 

garner higher demands for their products and therefore they can sell them at higher prices. 

A firm can alter its reputation based on the product quality it manufactures. However, due to 

imperfect information in a real market, reputation will not directly reflect the level of product 

quality the firm currently manufactures. In fact, according to Narasimhan, Ghosh, and Mendez 

(1993), reputation is a cumulative value that reflects all of the firm’s product quality up until 

present. Accordingly, one can infer that the level of product quality at present is going to affect 

reputation far into the future. Therefore, a model that can capture the relationship between 

product quality, reputation, and revenue is needed to fully understand the implications of product 

development duration and manufacturing ramp-up decisions. 

4.3.1 Product Quality – Reputation – Revenue Model 

As reviewed in1.1.3.2, while there are a few existing reputation models, there are even fewer that 

establishes the relationship between product reputation and firm reputation. 

The Bass new product diffusion model (1969) assumed that a new product is sold in one of two 

ways: through an innovator or through an imitator. An innovator purchases the product without 

knowledge of the product, while an imitator purchases the product after learning about it or 

seeing it. This can be written as, 

 ( ) ( ) (S t M N N M N )α β= − + −  (4.5) 

where S is the number of sales of the product, M is the product’s market potential (highest 

saturated amount of products in the market), N is the current number of products in the market. α 

represents innovator sales (no unit), and β represents imitator sales (unit of 1/number of 

products). From this equation the innovator sales depend solely on M – N, number of customers 

who have not purchased the product—also called market availability. The imitator sales are 

based on the market availability and also the number of products already in the market, which 

Bass uses to represent the popularity of the product. 

The NGM Model (Narasimhan, Ghosh et al. 1993) expands on what Bass established. The model 

keeps the original innovator sales term, but modifies the imitator sales term to take the effect of 
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reputation into account by replacing the number of products in the market to the number of 

quality-weighted product in the market. 

  (4.6) *( ) ( ) (S t M N N M Nα β= − + − )

N* is called quality-weighted number of products in the market, which is defined as 

 *N R D= ∗  (4.7) 

where R is the firm reputation and D represents the reputation propagation speed. In this model, 

reputation is a representation of the product of the sale rate and the quality index of the product 

in each period that customers expect of the firm, and D is the representation of the durability of 

firm reputation in unit of time periods. The bigger D is, the longer the firm reputation stays and 

the harder it is to change. Therefore, R*D represents the amount of products, weighted by their 

quality, and the duration of the reputation effect in the market. 

To change the reputation, the firm has to change the rate of product sale and/or the quality of the 

products from the previous expected value.  

 (1
i )R S Q R

D
= ∗ −

i
 (4.8) 

where Qi is the quality index of the product.  

To represent product quality, the concept of quality index—a number that represents comparison 

between the product failure rate and the base case of what is assumed as ‘good’ product—is 

introduced. The quality index is defined as 

 
0( )b b
c

iQ e
−

= . (4.9) 

where b0 and b are the failure rate of what is assumed as a ‘good’ product and the failure rate of 

the product being prescribed the index, respectively; c is a constant representing how sensitive 

the difference between the failure rates is to the quality index. 
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Figure 4-5: Product Quality Index with respect to Total Number of Faults Observed Over 5 Years. Note that 

base number is 5 faults over 5 years 

The reason for an exponential form of quality index instead of a linear one is due to the 

asymmetric outcome of perceived quality when viewed from failure rates point of view. This is 

supported by the findings by Donndelinger and Cook (1997), which suggests that customers are 

willing to pay $300 more for a vehicle with one less repair per year, while the they are willing to 

pay $700 less for a vehicle with one more repair per year. This suggests that customer sense of 

quality response more strongly to deterioration than improvement in quality. 

. 
Figure 4-6: Modified NGM Model for Determining Revenue Based on Reputation 
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In this model, reputation can be interpreted as equal part of product quality and equal part of 

number of product sale. For example, selling 1000 products with quality index of 0.5 will have 

the same impact to the firm reputation as selling 500 products with quality index of 1. 

The price of the product affects the demand by setting the number of customers who would 

consider the product. The market potential can be modeled as a function of price as 

 0
0( ) ; 0

ePM P M e
P

⎛ ⎞= >⎜ ⎟
⎝ ⎠

 (4.10) 

where P0, M0 are a known demand-price pair of the product and e is the elasticity representing 

the sensitivity of product demand to the change in price. 

In this model, however, it is assumed that all products made can be sold, albeit at different prices 

based on demand and product quality. Therefore, the reputation model is modified so that the 

price at which the products are sold for each period reflects the firm’s reputation. By combining 

equations (4.5) - (4.10), the price of a product for each period can be expressed as 

 

( )

1

0
0

*

e

MP P S N
Nα β

⎛ ⎞
⎜ ⎟
⎜=
⎜

+⎜ ⎟⎜ ⎟+⎝ ⎠

⎟
⎟

 (4.11) 

where now S is the production volume for that period. 

The revenue is simply the product of production volume and selling price 

 Rev P S= ∗ . (4.12) 
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Figure 4-7: Product Selling Price as a Function of Firm Reputation 

According to Figure 4-7, firm reputation represents what the customer believes the expected 

number of faults of the purchased product from the firm will be. For example, if the firm 

consistently sells products with 2 expected faults in the long run, the firm reputation would be 

6000. The higher the firm reputation—the lower the expected faults—the more the customer is 

willing to pay for the product. The parameters in P0, M0, and e in equation (4.11) are varied so 

that the selling price as a function of reputation fits the measured numbers. (Donndelinger and 

Cook 1997) 

4.3.2 Future Revenue from Improving Product Quality 

While the product quality - revenue model reflects the effect of product quality on firm 

reputation and revenue, the effect only lasts through the product lifecycle. When the product is 

finally phased out, the revenue flow stops. In reality, however, the firm’s change in reputation 

also affects future revenue flows from future generations of products; customers believe a firm 

with high reputation will keep manufacturing high quality products, and vice versa. If the model 

neglects these future cash flows, it may suggest decisions that are shortsighted. The model needs 

to take future cash flows into account when considering product launch decisions. The effect on 

future revenue flows can be modeled using modified equations (4.6)-(4.11). 
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The change in revenue is simply the product of the change in selling price and number of 

products made over its lifecycle. 

  (4.13) Revenue P SΔ = Δ ∗

In each period, the assumption that all products manufactured are sold still stands. The change in 

the selling price can therefore be expressed as 
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 (4.14) 

The change in number of quality-weighted products depends on the change in reputation 

 N RΔ = Δ ∗  (4.15) 

Assuming that the total, non-amortized manufacturing cost for each of the next generations of 

products is the same as of the current generation, the change in revenue is same as the change in 

net revenue. However, the change in net revenue from next generations of products are in the 

future; to take the time value of money effect into account, the change in net revenue must be 

amortized into present values. Assuming a constant lifecycle of all product generations, the sum 

of present values of the change in net revenue from the change in reputation due to the current 

generation of product is 

 ( )
lifecycle

NetRevNPV NetRev
r

Δ
Δ =  (4.16) 

where rlifecycle is the discount rate based on the product lifecycle. 

4.4 Conditions for Product Quality Case Comparison 

In order to understand the effect of warranty cost and reputation on net revenue and optimal 

product launch decisions, assumptions regarding comparison between cases must be discussed. 

To fairly and meaningfully compare different cases of product launch model, with and without 

reputation consideration, it is important to use the same set of input across the cases. 

One difficulty arising from comparison across cases with and without reputation consideration is 

inconsistent selling price function. While it is simple to use to selling price function for cases 

with no reputation consideration—the selling price of a product is simply as a linear function 

with a starting price and decaying rate, the selling price under reputation consideration cannot be 
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set directly. Instead, P0 in equation (4.11) must be manipulated to achieve the desired price or 

profit margin. Changing P0 while keeping other parameters constant sets a new price for which 

products will be sold under the same reputation throughout the lifecycle. The prices in the 

periods afterwards are determined by firm reputation and market availability. The model can 

impose additional fixed decay rate, but that will not be the actual rate of price change. For 

example, if the firm’s reputation is improving, even with an imposed pricing decay, price can 

still be increasing, albeit at a slower rate than otherwise. 

The analysis results show that optimal product launch decisions are dependent on product selling 

price and, therefore, profit margin. To rule out the effect of profit margin on product launch 

decisions, case comparison under constant profit margin can be done. This, however, leads to 

different selling price in each case—since the product cost in each case is different. Furthermore, 

since product development duration and manufacturing cycle time ramp-up influence the product 

unit cost, setting price for a profit margin at the base case (product development = 300 days) will 

still result in the change in profit margin due to the cost change. This leads to a less meaningful 

way to compare the net revenue across the cases since the selling prices are inconsistent. 

Although if the focus is to investigate the change in product development duration and cycle 

time ramp-up, this method is sufficient. 

The other approach is to do case comparison under the same selling price function. This leads to 

the aforementioned effect of inconsistent profit margin on product launch decisions. The benefit 

of this method is it is a more meaningful method to compare net revenue across the cases, even 

though it may lead to some cases never able to achieve positive net revenue.  

Because the selling price functions with and without reputation consideration cannot be matched, 

a constant profit margin is proposed as an assumption for comparison across these cases. 

4.5 Effect of Product Quality Consideration 

Now that the relationship between product quality and warranty cost is established, the impact of 

considering warranty cost on product launch decisions will be studied. 
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4.5.1 Effect of Warranty Cost Consideration 

The product development and manufacturing ramp-up variables are consistent with section 3.3. 

The selling price function is starting at $6500 on the first week with a reduction rate of 

$10/week, regardless of product quality, slightly higher than previously. It is assumed that now 

the manufacturing firm set the price to offset the expected warranty cost and tries to keep 3% 

profit margin at the base case (product development duration = 300 days). However, there is 

additional warranty costs associated with the amount of defects that remain in finished products. 

The failure rate distribution parameters are taken from those in Figure 4-3 and the cost of 

warranty per fault is $100. 

 
Figure 4-8: 5-Year Net Revenue Comparison with and without Warranty Cost as a Function of Product 

Development Duration 

As expected, Figure 4-8 shows that when considering warranty, the model suggests a longer 

product development duration. This is to allow product development to eliminate more latent 

issues before the product goes into manufacturing and let fewer make it through in the finished 

product as hidden defects. Note that the overall net revenue rises because the selling price is 

higher than the case without warranty consideration. Figure 4-6 shows the additional cost of 

warranty as a function of product development duration. 
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Figure 4-9: Corresponding Optimal Cycle Time Ramp-up Strategy for Optimal Product Development 

Duration with and without Warranty Cost 

Due to the lengthened product development duration suggested by the model, the cycle time 

ramp-up when considering warranty is faster because the product development process 

eliminates most of the issues before the start of manufacturing. This allows for the production 

speed to be increased more rapidly without suffering excessive manufacturing events. 

4.5.2 Effect of Reputation Consideration 

The same set of inputs used all previous cases is again used; the only difference is that now the 

selling price is a function of reputation as opposed to a function of time. According to equation 

(4.11), known market potential, price, and elasticity are M0 = 4000000, P0 = 6369, and e = 1.3, 

respectively. The elasticity is taken from economics literature on the price elasticity for demand 

of durable goods. For the sales term, innovator sales coefficient α = 3*10-4 and imitator sales 

coefficient β = 7.3*10-6and reputation delay D = 1000. (Narasimhan, Ghosh et al. 1993) 
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Figure 4-10: Net Revenue vs Product Development Duration Comparison between all three cases 

With the additional consideration of the effect of product quality on firm reputation and revenue, 

the model now suggests extending the product development duration substantially to 450 days 

from 300 days with no quality consideration and 340 days with warranty considerations only. 

This is because now there is an additional downside to producing low quality products. Low 

quality products build bad reputation causing the firm to reduce the price in order to be able to 

sell its inventory. Additionally, bad reputation accumulated from this generation of product also 

affects any subsequent product generations. The firm also has to sell them at lower prices than if 

than if it has a good reputation. Figure 4-11 illustrates effect of reputation on the net revenue of 

product launch. 
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Figure 4-11: Reputation-Influenced Revenue over Product Lifecycle with respect to Product Development 

Duration 

Figure 4-11 shows that when considering reputation, there is a negative impact on revenue when 

product development is shorter than 300 days (the base case). This is because the quality of a 

product released after short product development duration is low and creates a negative 

reputation for the firm. With low reputation, the firm will have to cut prices substantially to be 

able to sell the products (See Figure 4-7). For product development durations longer than 300 

days, there is a positive impact on revenue since better quality products generate good reputation 

for the firm. However, there is also a negative impact on revenue for overly extending product 

development duration: the effect of time value of revenue. The later the products are 

manufactured and sold, even at the same selling price, the value of revenue generated is less than 

earlier products. 

The maximum net revenue when considering only warranty is at 340 days and the maximum 

reputation-influenced revenue is at 480 days; these two results combine to generate optimal net 

revenue at 450 days when considering warranty and reputation. 

The cycle time ramp-up for the case which takes into account both warranty and reputation is the 

fastest one: starting at 180 seconds, speeding up to 120 seconds by week 3, and reaching full 

speed by week 7. Again, this is due to the additional time in product development that the model 
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suggested, eliminating even more latent issues before manufacturing launch, allowing faster 

ramp-up. 

 
Figure 4-12: Cycle Time Ramp-up Strategy Comparison between Scenarios 

An exploration of the effect of quality considerations on optimal product launch decisions shows 

that longer product development durations are optimal.  This is the case when considering both 

warranty costs and the impact on firm reputation with the changes from reputation have the 

greater impact. 
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5 Factors Influencing Product Launch Decisions 

The method to model the effects of product launch decisions on the cash flows of current and 

future generations of products has been established. Thus far, the model inputs are set to a 

realistic base case to facilitate the understanding of interactions between the cash flows. 

However, the merit of creating the product launch model is not only to predict the optimal 

product decisions for a specific situation but to use it to explore how the changes in any of its 

input affect the decisions and to identify the underlying drivers of the changes in the decisions. 

Thus the model will now be used to explore the effect of changes in firm strategies, selling price, 

price decay rates, warranty rates, and reputation on product launch decisions. 

Factors than can affect product launch decisions are divided into two categories: endogenous and 

exogenous factors. Since the model is intended to help managers make effective product launch 

decisions, the criteria for factor categorization are based on their relationship with the physical 

processes involved in product launch. Endogenous factors are directly related to the processes of 

the development and manufacturing of the products themselves. Exogenous factors are not 

related to the processes. For example, a firm’s manufacturing learning is an endogenous factor, 

directly involved in the rate at which the manufacturing team eliminates latent issues. On the 

other hand, profit margin is an exogenous factor, even though it is the manufacturing firm that 

nominally decides the price, and profit margin, at which the product would be sold. This is 

because the pricing decision is in reality dictated by the market and competitors and is not 

directly related to the product development and product manufacturing. 

Section 4.4 discusses the strengths and weaknesses of using constant profit margin versus 

constant selling price function in case comparisons. Constant profit margin, while less 

meaningful when the focus is on the change in product launch decisions, has the flexibility of 

providing common ground for cases with and without reputation consideration. However, in this 

Chapter, reputation considerations will be included in all analyses. Therefore, the analyses will 

employ a single selling function which is set so that profit margin at the base case (product 

development duration = 300 days) is 3%, where P0 = 6396. 

73 

 



5.1 Endogenous Factors 

Endogenous factors are often related to the product development and manufacturing processes. 

These are factors that represent the efficiency of the firm at designing or manufacturing. Firm 

strategies on these processes can significantly affect these factors, resulting in changes in the 

product launch performance. Therefore, a manager will have to make adjustments in product 

launch decisions accordingly. 

5.1.1 Change in Product Development Initial Latent Issues 

A firm may be especially efficient in introducing new products by intentionally designing them 

with product architectures, subsystems, and major components reused from or as slightly varied 

versions of older generations. Indeed, subsystem architecture re-use even without component re-

use can greatly help in avoiding (and eliminating) defects in design. Firms may also achieve 

particularly efficient product development cycles by focusing on either additional features or 

improvement of the product on a few parts, leaving other possible improvements to be worked 

on in the next generation. While this strategy limits the scope of product improvements from the 

previous generation of products, it helps facilitate the product development team to focus their 

efforts. The team will be able to deal with fewer and better understood problems, because most 

of the problems have already been eliminated or at least encountered in products from the 

previous generation. 

To represent this type of effect in the model, the DSM rework probability matrix is modified to 

reflect the reduced (or increased) level of activities in product development. Each probability 

entry is increased or decreased by the same percentage. This results in a change in the total 

number of rework events and the total number of latent issues. The number of latent issues can 

be plotted as a function of product development duration and the manufacturing and customer 

reaction models can then be employed to calculate the net revenue over the product lifecycle. 

The optimal product development duration for each case is illustrated in  

Figure 5-1. 
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Figure 5-1: Optimal Product Development Duration with varying Product Development Rework Probability 

Change. Note that negative percentage is an improvement, and vice versa. 

As expected, improvements in product development process (i.e., decrease in rework probability) 

result in significantly reduced optimal durations. At the base case (0% change), the optimal 

product development duration is 450 days. By reducing the rework probabilities by 10%, the 

optimal duration drops to 240 days. On the other hand, by increasing the probabilities by 10%, 

the optimal duration increases exponentially to 1470 days. This asymmetry is the result of the 

solution being bound one-sided by its lower limit: the smallest possible product development 

duration is 120 days—the average sum of all activity durations. Increasing rework probabilities 

further causes the DSM model run time to increase exponentially (indeed above 12% rework the 

failure rate becomes so high that PD is not completed) and thus the maximum increase is kept at 

10%. 

The DSM shows that lowering the rework probabilities between activities leads to fewer initial 

latent issues. Fewer latent issues allow the product development team to put the product design 

into manufacturing sooner. This reduces the product development cost and helps the firm sell 

products earlier. 

It is important to note the trend of latent issues at the optimal product development duration, the 

number of latent issues are 620, 800, 1200, 1500, and 1900 issues per thousand products at  

-10%, -5%, 0%, 5%, and 10% changes, respectively. Note that the rate of decrease of latent 

issues is smaller with longer product development duration. At the optimal duration, the loss of 
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revenue from longer duration outweighs the increase in revenue from improved product quality 

and decrease in manufacturing cost from fewer latent issues. With smaller initial latent issues 

from improved rework probabilities, the rate of decrease of latent issues gets to the critical rate at 

a smaller number of latent issues, leading to the optimal duration where the number of latent 

issues is smaller. 

 
Figure 5-2: Optimal Cycle Time Ramp-up under various Rework Probability Improvements 

Figure 5-2 shows that the improvement in rework probabilities also leads to faster cycle time 

ramp-up. At the base case (0%), the optimal cycle time at product development = 450 days is to 

start manufacturing with 180 s cycle time for two weeks, 120 s for 4 weeks, and then proceed to 

manufacture at full speed. At -10% change (10% improvement), the optimal cycle time is to 

manufacture at 120 s cycle time and ramp up to full speed in the second week. On the other 

hand, at 10% change (10% increase in probabilities), the optimal cycle time is to start 

manufacture at 180 s cycle time for 7 weeks, 120 s for 4 weeks, and then to full speed at week 

12. 
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Figure 5-3: Net Revenues with respect to Product Development Duration Decisions under changes in Rework 

Probabilities 

Figure 5-3 shows the comparison of net revenues under varying changes in rework probabilities 

when keeping pricing function consistent. As expected, lower rework probabilities lead to 

smaller initial latent issues, shorter product development duration, smaller product development 

cost, and, therefore, higher net revenue. At -10% change, the optimal net revenue is at $800 

million, while at 10% change, the optimal net revenue is at $-1 billion. It should also be noted 

that fairly small deterioration of the PD capability can make it impossible for the firm to make a 

profit at any PD timing strategy. 

5.1.2 Change in Firm’s Manufacturing Learning 

During manufacturing, there are remaining latent issues that have not all been eliminated in 

product development. These latent issues can be resolved during manufacturing through 

learning. After a manufacturing event caused by one of the issues occurs, a worker will 

investigate it. This may lead to the manufacturing workers discovering the root cause of the 

event. Once the design is modified to resolve that root cause, the issues will be eliminated from 
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all subsequent products in manufacturing. In the model, this process is represented by a 

probability: the number of issues eliminated during a period of manufacturing is the product of 

this probability and number of manufacturing events. For firms which are particularly skilled at 

resolving issues in manufacturing, this probability should be lower.  Changes in this probability 

will affect the issue elimination during manufacturing, which will affect the optimal product 

development duration. The product quality will also be affected because issues are eliminated at 

a different rate during the manufacturing period, changing the amount of hidden defects in 

finished products. 

 
Figure 5-4: Optimal Product Development Duration with respect to Varying Latent Issue Elimination 

Probability. Dash line represents the base case when probability = 0.15. 

According to Figure 5-4, the higher the probability of solving latent issues from manufacturing 

events, the shorter the model suggests the optimal product development duration need be. Higher 

manufacturing learning probabilities lead to higher rates of issue elimination, allowing managers 

to shorten the product development duration because the increase in latent issues that might be 

expected from shorten product development cycles is offset by the increase in the elimination 

rate of issue during manufacturing. High elimination rates will also improve product quality 

since more issues will be resolved earlier in manufacturing, which will also drive the firm to 

shorten the product development duration in order to be able to sell the products earlier. 

The base case is where the probability = 0.15 (dash line). By lowering this probability and 

slowing the learning rate, the optimal product development duration increases linearly until 
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probability = 0.03 below which the duration increases more significantly. This is because at 

extremely slow latent issue elimination rates, the manufacturing workers are barely able to 

resolve latent issues in the product design, causing manufacturing and warranty cost increase and 

reputation decrease.  

On the other hand, firms with improved issue elimination rates, i.e. those with probabilities 

above 0.3, cannot expect additional reductions below 400 days in their optimal product 

development duration. This is because regardless of the issues elimination rate, shortening the 

product development duration will lead to high numbers of latent issues in the products 

manufactured early in manufacturing ramp-up and, thus, low quality. This will affect the firm 

reputation early in the product lifecycle, preventing the products from selling at a price as high as 

they can potentially command. 
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Figure 5-5: Net Revenue with respect to Product Development Duration under selected Manufacturing 

Learning Rates 

Figure 5-5 shows the net revenue is increasing with higher manufacturing learning rates. The 

improvement is more significant at shorter product development duration since faster learning 

rate is more important when there are more latent issues. The base case (manufacturing learning 
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rate = 0.15) optimal net revenue is $210 million. At learning rate = 0.3, the net revenue is 

improved by approximately 5%, while at learning rate = 0.3, the net revenue decreased by 10%. 

It is also important to note that difference in net revenue is greater at shorter product 

development duration. This is because the change in manufacturing learning rate has a more 

significant impact when there are more latent issues.  

 
Figure 5-6: Optimal Cycle Time Ramp-ups under selected various Manufacturing Learning Rates 

Figure 5-6 shows that the higher the learning rate results in faster cycle time ramp-up. Even 

though shorter product development duration leads to higher latent issues at manufacturing 

launch and increase the manufacturing events, but the increase in manufacturing rate also allows 

the manufacturing workers to eliminate more issues, thus speeding the cycle time ramp-up. 

5.2 Exogenous Factors 

Factors unrelated to the manufacturing of the products are categorized as exogenous factors. 

These factors may not be readily apparent to the managers at the time of product manufacturing 

or are simply unpredictable, yet they may have strong influences on the profitability of product 

launch. These factors include decaying prices, changing profit margins, hidden defect failure 

rates, and the initial product reputation. 
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5.2.1 Decaying Prices 

In a tightly competitive market, especially for high technology products, customers are always 

looking out for ‘the newest best thing.’ Multiple firms release one product after another, 

competing to be the newest product on the market. This limits the window of opportunity for a 

firm to launch and capitalize on any one product. In this scenario, it is assumed that the firm will 

have to aggressively cut selling prices to incentivize customer demand after product launch. The 

effect of the rate of decaying price on product launch profitability is investigated in Figure 5-7. 

 
Figure 5-7: Optimal Product Development Duration under Various Price Reduction Rate 

Note that the units on the x-axis are the percent price reduction per week. The percentage of 

price reduction is based on the starting selling price, which is constant through all cases. 

Although the percentage seems small, it is a constant weekly rate. For example a 0.03% price 

reduction per week translates to a 1.5% price reduction per year and a 7.5% price reduction over 

the 5-year life cycle. The base case is a 0.06% price reduction rate, leading to optimal product 

development duration at 450 days. 

As expected, the faster the rate of price reduction, the shorter the model suggests product 

development should be. This is so that the firm can make as much revenue from manufacturing 

products as early as possible and sell them while the price is still high. Even though the firm 

would still need to be concerned about product quality, the more aggressive the price cut, the less 

important of a factor product quality becomes to the performance of product launch. 
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Figure 5-8: Net Revenue with respect to Product Development Duration under various Price Decay Rates 

As Figure 5-8, faster price decay results in lower net revenue over the product lifecycle. Also 

note that difference in net revenue between cases is larger the longer product development 

duration is. This is because the longer product development duration is, the larger the different in 

selling prices becomes due to constant price reductions. 
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Figure 5-9: Optimal Cycle Time Ramp-up under various Price Decay Rates 

Since faster price decay leads to shorter product development duration, which in turns lead to 

higher latent issues, the model suggests that manufacturing cycle time ramp-up should be slower 

to avoid high cost from manufacturing events. For example, at 0.21% / week price reduction, the 
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optimal product development duration is at 330 days, leading to cycle time starting out at 300 s, 

and reaching full speed only at week 13. While at no price reduction, the optimal duration is at 

500 days, and the cycle time starts out at 120 s and reaching full speed by the second week.  

5.2.2 Profit Margin 

In manufacturing industries, the product profit margin can vary widely depending on the type of 

product, demand, and many other factors. In general, profit margin is defined by the total profit 

divided by the total revenue. However, for the purpose of this study, it is defined as net revenue 

divided by the total revenue since the focus of the study is on firm’s manufacturing decisions; 

managers do not yet know the profit the product will make, therefore a representative price is set 

to facilitate net revenue calculation. 

Note that profit margin is not a direct input to the model; in order to achieve a specified profit 

margin, the price – reputation equation parameter P0 (equation (4.11)) is instead set with the base 

case of product development duration = 300 days. 

Here, optimal product development duration is calculated with respect to various starting selling 

prices over the 5-year life cycle of the product. 

 
Figure 5-10: Optimal Product Development Duration for various Starting Prices. 
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Note that the profit margin percentage is for the selling price at base case at 300 days. Once the 

selling price for the base case is found, it is fixed and the model tests other product development 

duration for better outcomes. 

At the base case, using P0 = 6396 corresponding to a 3% profit margin, the optimal product 

development duration is 450 days. The model suggests that longer product development 

durations are optimal when the product profit margin is lower. This is to avoid high 

manufacturing costs and low product quality from latent issues. This suggests that when the 

profit per vehicle is low, the way to increase net revenue is to reduce cost and improve 

reputation. When the profit margin is low, increasing the product development duration means 

there is less time to manufacture products before they become obsolete, but the revenue loss 

from them is small compared to the cost saving and increase in revenue from improved quality. 

On the other hand, when the profit margin is high, the model suggests short product development 

durations. This will increase the cost and keep reputation from reaching the highest possible 

levels.  This suggests that for high profit margin, firms should seek to make more products and 

make them early. When the profit margin is high, the increase in revenue from more products 

made during lengthened manufacturing period because of shortened product development 

duration is higher than the cost saving and revenue increase from improved quality. 
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Figure 5-11: Net Revenue with respect to Product Development Duration under various Profit Margins 

As Figure 5-11 shows, the higher P0—corresponding to higher profit margin—leads to higher net 

revenue. At P0 = $11000, corresponding to 100% profit margin, the optimal net revenue is $3.3 

billion, while at P0 = 6396, corresponding to 3% profit margin, the optimal net revenue is $200 

million. 
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Figure 5-12: Optimal Cycle Time Ramp-ups under various Profit Margins 
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Figure 5-12 shows that a higher profit margin leads to shorter product development duration and 

higher latent issues, resulting in the model suggesting slower cycle time ramp-up to avoid high 

manufacturing cost. At 80% profit margin, the model suggests that cycle time for the first week 

is 180 s and stays constant for 6 weeks, speeding up to 120 s for two weeks, and finally reaching 

full speed at week 9. At 3% profit margin, the cycle time should also start at 180 s, but should 

stay constant for only 2 weeks, then speed up to 120 s for 4 weeks before reaching full speed at 

week 7. 

5.2.3 Hidden Defect Failure Rate 

While firms may be able to control the number of hidden defects making it into the finished 

products through inspection, they have no control over the failure rate of the hidden defects. λ 

parameter in the Weibull distribution is varied to investigate how the change in failure rate 

affects the product launch decisions. While it does not directly represent the failure rate of a 

product, equation (4.3) shows that as λ increases, the failure rate of a hidden defect decreases. 

Again, note that the failure rate is not a direct input. Therefore, to explore a range of failure rates, 

the Weibull parameter λ is varied instead. To eliminate the effect of differences in profit margin, 

the analysis is done in using constant profit at 3% at 300 days for each failure rate case. 
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Figure 5-13: Optimal Product Development Duration with Various Failure Rates by changing λ 

At the base case, when λ =1 (corresponding to 5 faults over 5 years @ product development 

duration = 300 days), the optimal product development duration is 450 days. Lower λs lead to 

higher failure rates and therefore higher expected warranty claims. This means that with the 

same number of hidden defects in the finished products, the customer will encounter more faults. 

The corresponding expected number of errors for each λ is shown on the secondary horizontal 

axis. The values of lambda at the two ends, 0.6 and 2, corresponds to the expected number of 

errors of 10 and 1 over 5 years, respectively, while the typical range of number of faults for 

automotive industry is from 2 to 8 over 5 years. (Arnum 2006) 

This not only leads to the firm paying more for the warranty cost, but also has a greater impact 

on firm reputation because of the lower product quality. Note that while λ decreases in a linear 

scale, the failure rate and expected warranty claims increase exponentially. The effect is 

particularly strong because the failure rate not only drives the warranty cost, but also the quality 

index, reputation, and revenue. 
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Figure 5-14: Net Revenue with respect to Product Development Duration under various Weibull Parameter 

λ’s 

As Figure 5-14 suggests, a higher hidden issue failure rate (smaller λ) leads to smaller lifecycle 

net revenue due to the increasing warranty cost and lower revenue from lower reputation. This 

effect is especially significant in shorter product development durations due to higher latent 

issues at manufacturing launch and, therefore, higher hidden defects in finished products. 
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Figure 5-15: Optimal Cycle Time Ramp-up under various Weibull Parameter λ’s 

Figure 5-15 suggests that for the higher hidden issue failure rate (smaller λ) is, which leads to a 

longer product development duration, the slower the cycle time ramp-up should be to avoid the 

high manufacturing cost from high latent issues. For λ = 2, the optimal ramp-up starts at 240 s for 
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4 weeks, 180 s for 6 weeks, 120 s for 3 weeks before reaching full speed at week 14. On the 

other end, for λ = 0.6, the optimal ramp-up starts at 120 s and reaches full speed by the second 

week.  

5.2.4 Initial Reputation 

The firm reputation represents the expected level of quality and amount of products the firm will 

sell. This leads to the customers believing that the firm will release high quality products and 

therefore high demands for the firm. 

  
Figure 5-16: Optimal Product Development Duration with Various Initial Firm Reputations 

Initial reputation of the firm affects the optimal product development duration. The higher the 

reputation of the firm, the shorter the model suggests product development duration need be. 

Since high reputation raises the customer demand and allows the firm to raise the selling price, 

the firm should shorten product development duration to manufacture the products and start 

selling as early as possible. With high reputation, there is a ‘hype’ effect for the products where 

customer demand builds up very quickly in expectation of the release date and the firm can sell 

the products at a high price. The firm can then take advantage of this demand by releasing the 

products to the market as soon as it can. Of course, if they continue to the point of low quality, 

their reputation will eventually fall and thus this strategy must be monitored carefully. 
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Figure 5-17: Net Revenue with respect to Product Development Duration under various Initial Firm 

Reputations 

As Figure 5-17 suggests, the lifecycle net revenue is higher when the firm has higher initial 

reputation. This is because, with high reputation, the firm can sell the product at a higher price. 

For reputation = 1000, the optimal net revenue is -$1 billion. On the other hand, for reputation = 

7000, the optimal net revenue is at $1.2 billion. The effect is especially strong at shorter product 

development duration because of more hidden defects. 

0

60

120

180

240

0 5 10 15 20

C
yc

le
 T

im
e 

(s
)

Weeks since Manufacturing Launch

300

1000

1750

2500

3250

4000

4750

5500

6250

7000

 
Figure 5-18: Optimal Cycle Time Ramp-ups under various Initial Reputations 
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As Figure 5-18 shows, the higher initial reputation of the firm is, leading to shorter product 

development duration, the slower the optimal cycle time ramp-up is. Again, this is to avoid the 

high manufacturing cost from more latent issues. For reputation = 1000, the optimal ramp-up 

starts at 120 s and reaches full speed by the second week, while for reputation = 7000, the ramp-

up starts at 240 s for 3 weeks, 180 s for 5 weeks, 120 s for 3 weeks, and reaches full speed at 

week 12. 

5.3 Insights from Case Studies 

5.3.1 Endogenous vs Exogenous Factor Effects on Product Launch Decisions 

One of the most important findings from the case studies is the difference between the effect of 

endogenous and exogenous factor on product launch decisions. In the case of endogenous 

factors, the ones that lead to shorter product development duration also leads to faster 

manufacturing cycle time ramp-up. On the other hand, in the case of exogenous factors, the ones 

that lead to shorter product development duration will also lead to slower cycle time ramp-up.  

Since in the case of exogenous factors, there is no change in the way the manufacturing firm 

deals with design or manufacturing problems; even when shorter product development leads to 

higher net revenue through increased revenue, the model still suggests that manufacturing ramp-

up at a slower rate to avoid high manufacturing cost from increased latent issues. 

However, in the case of improving endogenous factors, the firm has become more capable of 

dealing with problems during product development and/or manufacturing. Therefore, the firm 

can shorten product development and manufacturing cycle time ramp-up at the same time. 

In Figure 5-19 and Figure 5-20, the optimal product development duration and ramp-up time 

(defined as the duration from the beginning of manufacturing until cycle time reaches full speed) 

under influence of exogenous factor (profit margin) and endogenous factor (rework probabilities) 

are illustrated, respectively. For both factors, the change in product development duration 

dominates the change in ramp-up time. In the case of exogenous factor where it leads to shorter 

product development and longer ramp-up time, the total time the start of product development to 

the first day of full-speed manufacturing is still longer than the base case. 
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Figure 5-19: Optimal Product Development Duration and Ramp-up Time under various Price Reduction 

Rates (Exogenous Factor) 

 
Figure 5-20: Optimal Product Development Duration and Ramp-up Time under various Changes in Rework 

Probabilities (Endogenous Factor) 

This difference in the effect indicates that while it is important for a firm to be able plan product 

launch decisions based on various outside influences, it is even more important to increase its 

efficiency in dealing with latent issues during the design and manufacturing processes. 
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5.3.2 Firm Product Launch Tactical Strategies 

A manufacturing firm can use the results discussed in sections 5.1 and 5.2 to not only carefully 

plan product launch decisions on an operating level, but also to prioritize and focus on a more 

tactical level of decisions that lead to improving the ‘optimal’ product launch decisions. 

5.3.2.1 Standardization 

As mentioned, variation in product development, while beneficial in the beginning, can be 

equally detrimental if not managed properly: different product designs in the beginning presents 

team with alternatives to satisfy customer demand, but the longer the team works in parallel on 

multiple alternatives, the more wasteful time there will be. In order to minimize such work, firm 

needs to standardize the process of design and process. This will minimize engineering changes 

that can also lead to reworks on other activities and resource waste. 

There are three categories of standardization: design, process, and skill-set. (Morgan and Liker 

2006) Design standardization is standardization of component design and architecture. This 

includes the use proven, standard components shared across multiple product models, or build 

model variations based on a common platform, and designing reusable architectures. Process 

standardization involves standardizing tasks, work orders, and the sequences of tasks in the 

development, testing, and manufacturing of the product. Finally, skill-set standardization 

involves the training of workers across different teams to reduce the amount of task variations 

from product development, and also helps manager to have flexibility in staffing. 

In applying design standardization, common architecture and reusing of qualified components 

and subsystems are important to efficiency and quality since they can substantially reduce 

variability during product development, tooling development, and manufacturing. Without 

sacrificing product differentiation between generations, common components can be used in 

systems that do not affect customer perception of differentiation while attain proven geometries 

and manufacturability. 

Using process standardization, the firm can standardize common product development activities, 

sequence of activities, and activity durations to minimize variations in information between them 

to reduce rework. This also helps other interdependent processes know what information is 
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required from each other and when they are needed, preventing delay in other downstream 

activities. 

By standardizing skill sets of team members, the firm can build team integrity and drive task 

variation out of product development process. Managers will have greater flexibility in 

assignments and more confidence in performance expectations. 

By efficiently using standardization in product development and manufacturing, the firm will 

have flexibility in resource management, eliminate unnecessary and wasteful reworks, and 

achieve more effective product development and manufacturing. 

5.3.2.2 Learning and Training 

As Morgan mentioned “Human learns; machine does not,” (Morgan and Liker 2006) it is 

important for managers to understand the significant of learning and training to product launch. 

Learning from experience is enhanced by repetition, which is especially true for complex tasks. 

In product development, engineers acquire experience through multiple cycles of works. 

Therefore, in a firm with long product development duration, engineers have less chance to 

experience as many cycles of product development as in a firm with short product development 

duration. Therefore, there is even more benefit for a firm to shorten product development, 

besides the competitive advantage of releasing the product earlier. 

However, there are many reasons the learning from experience process can fail. Time pressures 

can limit the amount of learning the worker can benefit from by limiting time to reflect on 

previous mistakes. Excessive workload can drown the workers, preventing them from applying 

lessons learned to benefit the project. Even in coming up with lessons learned, the event can turn 

into a blame game at which people can become reluctant to discuss problems. (Garvin 2000) 

By training workers not only in their skills required to do the job, but also in positive thinking 

and constructive, learning-induced working culture, a team can become more effective in its 

learning and reduce the time needed to ‘reinvent the wheel.’ This will lead to faster latent issues 

elimination rate, both during product development and manufacturing, speeding up ‘optimal’ 

product development duration and ramp-up. 
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6 Conclusions and Future Opportunities 

6.1 Conclusions 

The feasibility of constructing a net revenue model of product launch that takes into account the 

performance of product development, manufacturing, and product quality has been established. 

The analyses performed have shown suboptimal decisions will result if manufacturing decisions 

are made without considering the cascading effect from product development through 

manufacturing and the resulting impact on product quality. 

Manufacturing managers can make specific operational-level decisions, such as the product 

development duration and the manufacturing ramp-up timing that can influence the profitability 

of the product/firm, while there may be pressure to start production early and ramp up production 

volume quickly to generate revenue in the short term, the manager must consider the downside 

of these decisions. Overly shortened product development lead to a product design with 

unacceptably high numbers of latent issues that cause manufacturing problems. Furthermore, 

ramping up production volume and cycle time too fast can further compound the problem, 

causing even more manufacturing events. These events lead to downtime, rework, and rejected 

parts which increases manufacturing costs. 

Not only do short product development durations and fast manufacturing ramp-ups lead to 

increased manufacturing costs, but also to firm’s selling lower quality product at a high rate. 

Since there are more latent issues in the product design, combined with the high volume due to 

fast ramp-up, the implication of low product quality is further complicated. 

On the cost side, low quality products have multiple hidden defects that can manifest at the 

customers as faults. Customers will bring the products in to get them serviced or parts replaced, 

adding to the warranty costs for the firm. On the revenue side, selling low quality products has 

impacts on the reputation of the firm. Firms with a reputation for high quality products can sell 

their products at a higher price, regardless of the actual product quality, but not without an 

eventual downside impact on their reputation. Selling high volumes of low quality products early 

in the product lifecycle can effectively destroy the firm reputation and prevent subsequent 

95 

 



products from selling at a price they might otherwise command, even if the actual product 

quality improves. 

Factors, both endogenous and exogenous, can have significant effects on product launch 

performance. A firm can take product launch improvement up to a higher level by improving 

product development and manufacturing operations, which influence endogenous factors such as 

firm strategy to improve the initial latent issues or manufacturing learning.  

Improvements in product development can immensely help facilitate product launch in the 

manufacturing phase. By intentionally limiting the changes in product design to a set of features 

or parts, product development team can limit the number of latent issues in the product. This also 

helps the team focus their efforts on the redesigned parts from which most latent issues will be 

generated. This leads to fewer initial latent issues and faster issues resolution during product 

development, allowing manufacturing launch to start earlier without an increase in latent issues. 

In addition, independent of re-use, a firm that develops superior skill in identifying and resolving 

problems has an enormous advantage in competition. Hiring, training, retention and processes 

for working effectively together are possible ways to achieve this goal. The improvement allows 

the manager to shorten both the product development and manufacturing ramp-up and substantial 

increase in firm’s profitability. 

Improvement in manufacturing learning can also make a difference in product launch. Increased 

rates of manufacturing learning result in increased issue elimination during production.  This 

allows the cycle time ramp-up to occur at a faster rate and the manufacturing launch to start 

earlier since the increase in latent issues typically experienced with these actions will be offset 

by the increased issue elimination rate. Therefore, improved manufacturing learning allows a 

manager to shorten the product development cycle and to ramp-up the manufacturing process 

more quickly. 

Exogenous factors involving the market and competitors such as decaying prices, changing 

starting prices, different product failure rates, and different initial firm reputations can also 

influence the effectiveness of product launch decisions. Faster decaying prices force shorter 

product development durations and faster manufacturing ramp-ups so that the firm can sell more 

products at the high prices which are available only early on. High starting prices also allow 

shorter product development cycles because the product costs become less important than 
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revenues in the net revenue calculation; the firm wants to make and sell products as early as 

possible to take advantage of the high prices and high profit margins. Higher product failure rates 

will force managers to delay manufacturing launch in order to allow sufficient time in product 

development to eliminate more issues since higher failure rates will reduce the ‘acceptable’ 

amount of latent issues at manufacturing launch. Finally, a higher initial firm quality reputation 

allows the manager to start the manufacturing launch sooner since a good quality reputation 

means the firm can command a higher price for the product. The firm will, therefore, want to 

start the production early and ramp up quickly to take advantage of the high demand and price 

resulting from the firm’s good reputation. 

To achieve the most effective product launch decisions, a manager must consider all the 

aforementioned factors in order to balance the benefits and penalties from changing the product 

development duration and the manufacturing ramp-up strategy. A firm needs to carefully 

consider design strategies for new product generations, weighing tradeoffs between focused and 

incremental design changes with smoother product launches and more radical and far reaching 

design changes that have extra customer appeal, but more complex launches. The manufacturing 

team can also help improve product launch by improving manufacturing learning and the root 

cause investigation process to shorten product development duration, speed manufacturing ramp-

up, and improve product quality. 

6.2 Contributions 

The dissertation introduces an integrative model of translating product development duration and 

manufacturing ramp-up into product launch performance and optimizing the duration of both of 

them. The concept of modeling a causal connection between product development and 

manufacturing is introduced by modeling the impact of latent issues in product development, 

manufacturing, and product quality. 

An innovative method of design structure matrix simulation is employed to determine the 

number of latent issues from product development by modifying its termination condition from 

the completion of all activities to a preset duration. 

The number of latent issues is translated to the amount of manufacturing events through the 

combination of probability that an issue turns into a manufacturing event and the production 
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volume, both of which are dependent on the cycle time decision. Furthermore, the model 

proposes a more straightforward manufacturing learning model by assuming that for each 

manufacturing event, there is a probability that the root cause of the event is eliminated. This will 

reduce the number of latent issues in the product design, leading directly to the reduction in 

number of manufacturing events and manufacturing cost. 

The dissertation further proposes that the implication of product quality to product launch 

performance be incorporated. There may be defects that may not manifest as events during 

manufacturing, and therefore cannot be corrected, and remain in the finished products. The 

Weibull distribution is used to model the likelihood that the remaining defects show up as faults 

during the usage of the product. The defects will cost the firm additional warranty to replace or 

repair the faults. 

The concept of reputation is introduced into the model to capture the effect of market imperfect 

information on the selling price of the product. Instead of the customer demand depending on the 

actual product quality, as modeled by the number of faults over the product warranty period, the 

demand depends on the firm’s reputation. The firm reputation, while dependent on the history of 

product sales and quality, is not a direct representation of the current product quality. Therefore, 

firm should consider the product quality more carefully since it has a long-lasting effect on 

reputation and profitability. 

Finally, case studies based on automotive industry data show that while exogenous factors have 

opposite effects on product development duration and manufacturing ramp-up, internal factors 

leads to similar results for both product development duration and manufacturing ramp-up. The 

robustness of the results are also shown in the studies, where late product launches less sensitive 

to changes in quality and reputation and early product launches are less sensitive to changes in 

pricing. 

6.3 Future Research Opportunities 

6.3.1 Effect of Uncertainty on Product Launch Decisions 

While Chapter 5 explores the sensitivity of product launch decisions to various endogenous and 

exogenous factors, the model has yet to fully incorporate uncertainty into calculating product 
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launch decision performance. It would be beneficial to understand not only how the average 

value of a factor, but more generally how its distribution affects the performance of a decision.  

Some of the factors that can be affected by uncertainties are selling price, demand, product 

failure rate, and initial reputation. For example, the firm cannot be fully certain at the beginning 

of the manufacturing launch what the competitors and overall economy will do, and therefore 

cannot know the price, and consequently, the demand the product will obtain. 

The uncertainty in selling price stems from the many uncertainties in the market: level of 

competition, imperfect information, and customer demand. The firm has no way of exactly 

measuring how much the customer knows about its products, the accuracy of that information, or 

how its product compares to other firms’ products. Even with that, each customer values 

different features of a product differently. For example, one customer might value a computer 

with good graphics capability, while another might value a computer with good audio output and 

all of these might change because of various uncontrollable factors. Therefore, it is difficult for 

the firm to expect how the products would perform once it is released in the market, both in short 

term and throughout its lifecycle. 

Uncertainty of firm reputation can affect the product launch decision performance. As shown 

in Figure 4-7, the effect of reputation on the product price is asymmetric; an increase in price 

from increased reputation is not equal to the decrease in price from decreased reputation of the 

same degree. In fact, the magnitude of increase is about half of the magnitude of decrease, for the 

same change in reputation. Consequently, firms should be even more careful about any neg

impact on reputation, as there is more to lose than to gain with reputation uncertainty. 

ative 

Monte Carlo simulation can help facilitate such analyses. By randomly generating inputs based 

on specified probability distribution functions, the model can take the inputs and generate the net 

revenues based on fixed product development duration and ramp-up. The net revenues can then 

averaged and that is the expected net revenue for that product development duration. The optimal 

product launch decision is the one that results in the highest expected net revenue. Furthermore, 

the robustness of product development duration and cycle time ramp-up can also be investigated 

by studying the resulting distributions of costs and revenues, or even the elements of cost such as 

material cost, labor cost, or warranty cost. 
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6.3.2 Reputation Definition 

In this dissertation, reputation is defined as the product of sales rate and quality index. The 

quality index is a term that represents the comparison in product failure rates between an average 

value and the product. However, there are other references in the literature that suggest 

reputation has more to do with of the quality of the products and less with the number of 

products sold. (Shapiro 1982; Shapiro 1983; Paulson Gjerde and Slotnick 2004) 

Keeping other relationships the same, this conceptual change in the way reputation is modeled 

could lead to product quality affecting product launch performance more significantly. There 

would be fewer reasons to shorten product development and ramp up the volume other than to 

obtain more total revenue. With revenue per vehicle depends only on reputation, and reputation 

depends only on the history of quality, product quality now becomes an even stronger driver for 

revenue. The firm will have to give even more priority to selling high quality products to achieve 

high reputation and make profit. 

6.3.3 Manufacturing Industry Taxonomies 

According to the work by Kar (2007), a manufacturing industry can be categorized by two 

characteristics: material intensity and capital/labor intensity. In his work, a manufacturing 

business is categorized as either material intensive or non-material intensive and either labor 

intensive or capital intensive. 

While the details of the classification scheme are subject to debate, material intensity and 

capital/labor intensity do not need to be defined in discrete fashion. In fact, both material and 

capital/labor intensities can be defined as the degree of intensities, i.e. material intensity by the 

percentage of material cost in unit cost and capital/labor intensity by the ratio of labor cost to 

capital cost per unit. 

Material intensity, by definition, will affect the material cost in the product. Material cost in 

product launch model is driven by the reject rate, which is driven by number of latent issues in 

the product design during manufacturing. The more important material cost is in a product cost, 

the longer product development and the slower the cycle time ramp-up should be to avoid 

unnecessary rejected parts which leads to high material cost. Therefore, the change in material 

intensity should affect product launch decisions. 
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Total capital cost is constant regardless of product launch decisions, and therefore to minimize 

the capital cost per unit, a manager will want to shorten the product development cycle and speed 

up the manufacturing ramp-up. However, this benefit is offset by the increase in latent issues, 

which leads to low product quality. Total labor cost, on the other hand, is affected by product 

launch decisions through the use of overtime. While not all product launch decisions will lead to 

overtime, increasing labor intensity will further prevent any product launch decisions that lead to 

overtime. This will drive the manager to lengthen the product development duration and slow 

down the ramp-up. Although this will lead to the issue of time value of money since revenue will 

start late. Therefore, degree of capital/labor intensity will also affect product launch decisions. 

6.3.4 Product Quality Transparency 

Product quality transparency is the ‘ability’ of the product to demonstrate its quality to the 

customer. It is assumed in the model that the product quality is apparent to the customer at the 

time of purchase. However, certain products’ qualities are easily demonstrated, while others are 

not even after prolonged observation or usage, especially for more complex products. This 

product characteristic will have an effect on product launch decisions. 

In equation (4.8), D parameter that represents the ‘perception delay’ of the customers on the 

product. While this can be interpreted as a delay for the firm’s reputation to accurately represent 

its product quality, D can also be used to represent the delay of the customer perception between 

the time of purchase and the time the actual product quality is decided for the product. D can 

then represent the total perception delay from the time of product purchase to the time that the 

product quality impacts the firm’s reputation. 

The more transparent the product quality is, the faster the quality of the product impacts the 

firm’s reputation. The firm should then lengthen product development duration to improve 

product quality, which would quickly results in improved firm’s reputation and increase in net 

revenue.
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