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ABSTRACT 
 
This present thesis hypothesized that the increasing demand for fuel-efficient vehicles, 
recently updated Corporate Average Fuel Economy (CAFE) regulation, and volatile U.S. 
sales markets may foreshadow a shift in the competitiveness of lightweight alternative 
materials relative to incumbent steels. To test this hypothesis, a novel automotive 
materials selection methodology was developed which evaluates the net present value 
(NPV) of vehicle projects by incorporating five integrated models: (1) an ADVISOR-
based vehicle performance model, (2) a market model that predicts expected annual sales, 
(3) a cost model that maps technology decisions and sales levels to fixed and variable 
costs, (4) a binomial lattice model of demand uncertainty, and (5) a regulatory model that 
mimics CAFE. The integrated model solves materials selection problems by 
optimization, using explicit simulation to find the set of materials choices for which the 
NPV of a vehicle project is maximized.   
 
A case study was developed to illuminate the competitive dynamics between incumbent 
steel and lightweight composite materials in two vehicle subsystems (body-in-white, 
closure set) and three vehicle markets (small car, mid-size car, luxury car). The results 
suggest that the value of acceleration improvements due to a lightweight materials-
enabled vehicle mass reduction is greater than the value of concurrent fuel economy 
improvements. When the value of acceleration improvements and fuel economy 
improvements are considered, the production volume at which it becomes economically 
efficient to switch from using composites to using steel shifts from the cost-competitive 
production volume to a higher one. The magnitude of this shift depends on the degree to 
which the car market values performance improvements and the rate at which composites 
become more costly than steel. Generally, more stringent CAFE policies were found to 
improve composite materials’ competitiveness to a greater degree than the effects of 
demand uncertainty.  
 
 
Thesis Supervisor: Randolph E. Kirchain, Jr. 
Title: Assistant Professor of Materials Science & Engineering and Engineering Systems
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Chapter 1: Introduction 
 
 Prevailing market forces and contemporary regulations have the potential to 

drastically alter the way passenger cars and trucks are made. Rising gasoline prices, 

increasing demand for environmental goods, and newly enacted federal fuel economy 

legislation foreshadow a shift in fleet characteristics. But the path is very uncertain. 

Volatile sales, entries from new competitors and new technologies, shrinking profit 

margins, and still unsettled issues such as CO2 emissions regulation in the U.S. make 

automotive technology forecasting difficult. Yet the unpredictable nature of future 

industry dynamics itself may advantage novel technologies that are more adaptable to 

flexible projects, in contrast to incumbent technologies that excel when times are steady.  

 Certain classes of lightweight materials technologies suitable for automotive 

applications, including fiber reinforced composites, exhibit production economics that 

may make them attractive to firms that face an uncertain future. Essentially, the choice to 

manufacture components using composites as opposed to incumbent metals like steel 

entails a smaller initial capital investment and deferred tool costs that scale in proportion 

to production volume. (Composite fabrication equipment is generally less expensive than 

metal-forming equipment and most tools that shape composite parts are much less 

expensive, but also less durable than their expensive and long-lasting metal counterparts.) 

This means that while composite manufacturing usually cannot compete with steel’s 

excellent economies of scale at high production volumes, a composite-manufacturing 

firm stands to lose less on the downside than a steel-manufacturing firm does if demand 

falls or changing product needs necessitate re-tooling.   
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 Moreover, automakers’ material decisions are driven by the value that the 

technology can impart in the product, not just the cost of producing it. An automotive 

firm must balance the final manufacturing cost associated with production in a certain 

material against the material’s potential to influence vehicle attributes like fuel economy 

and acceleration. For example, a lightweight composite component may be more 

expensive to manufacture than a conventional steel design, but the increased demand for 

a more efficient and faster car might make up for the production cost penalty.  

Alternatively, a vehicle designer could use the performance benefit from lightweight 

materials to increase the number of accessories and electronics while keeping 

acceleration or fuel economy constant.  All things being equal, the best material choice is 

the best business choice: the one that generates the most value for the firm. 

 Automakers will be repeatedly turning to this value equation as they resolve 

strategies to address changing market trends and new fuel economy regulations. On the 

flip side, auto industry regulators need to be appraised of the state of the art in vehicle 

technologies and their economic implications in order to craft rules that are effective, 

technically feasible, but not extraordinarily burdensome.  

 This thesis lies at the intersection of these interests. It is a novel investigation of 

automotive materials economics that explicitly considers uncertainty in market demand 

and fuel economy regulation in order to shed light on a possible shift in materials 

competitiveness that may alter the automotive design paradigm.  

1.1 Thesis Objectives 

My primary goal with this work is to investigate the ways that market and 

regulatory uncertainty may advantage or disadvantage different classes of materials 
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relative to each other and to other automotive technologies.  To achieve that end, I have 

developed a methodology to evaluate the impact of those variables on the expected net 

present value of a vehicle fleet. While this methodology is a general approach that can be 

applied to many problem variations, the scope of this thesis is bounded by four critical 

decisions that more broadly inform technology strategy,  

 

1. Materials choice for entire body-in-white 

2. Materials choice for entire closure set 

3. Engine power  

4. Production capacity  

 
 
As the performance benefit and economic consequence of lightweighting just one 

part is often very small, the lightweighting options investigated in this thesis represent 

materials choices for large subsystems: the entire body and the entire closure set. By 

analyzing lightweighting effects on such a large scale, the analysis pushes the limits of 

current technology and documents the potential range of any uncertainty effects on an 

automaker’s expected project value.  

Furthermore, these parameters are broad enough to draw general conclusions 

about materials strategies in automotive applications, but still specific enough to offer 

insights into different variations on those approaches, such as options that involve a lesser 

degree of lightweighting (closures only or body only) combined with a more powerful 

engine, and vice versa. Above all, I intend to characterize the nature and degree of any 

effects that uncertainty has on the expected value of vehicle fleets with different 

technology strategies.   
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1.2 Relevant Automotive Industry Issues in Context 

1.2.1 Historical materials use in the auto industry 
 

In spite of the momentous transformations that the rise of the automobile enabled, 

the average car’s composition has remained relatively stable over the years. Henry Ford’s 

circa-1910 Model T was constructed in much the same way that modern cars are: using a 

stamped mild steel frame, stamped mild steel closure panels, and a cast iron engine block 

(Page 1917).  Ford used wood for the body of the Model-T, but stamped steel soon 

replaced wood as the material of choice for car bodies and this conventional steel-iron 

construction became the standard formula for major automakers through the 1970’s.  

Figure 1 illustrates the architecture of a typical modern steel car design in which the body 

and frame are designed as one subsystem (known as a unitized body, or unibody), and the 

closure panels (hood, doors, fender and decklid) are smaller subsystems that attach to the 

body.  
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Figure 1  Car body and closure panels 
 

Materials use in automotive manufacturing has changed only slightly since 1970 

at the vehicle level. In the past three decades, aluminum has made small gains each year 

at the expense of iron and steel, as Figure 2 and Table 1 illustrate. Although aluminum 

content has increased from 2% to 9% (on as mass basis) and plastic/composite use has 

increased from 4% to 8%, a typical modern passenger car is still basically a steel and iron 

machine.  
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Figure 2  Material composition of the average U.S. automobile by mass 
 

percent mass composition 1976 1986 1996 2004 
     
Steel 57 49 46 43 
High Strength Steel  3 7 9 12 
Iron 15 14 12 9 
Aluminum 2 5 6 9 
Plastics/Composites 4 7 8 8 
Other 18 18 19 20 
Total 100 100 100 100 
Table 1  Material composition of the average U.S. automobile by mass 
 
 

Yet examining the applications where aluminum and composites have been able 

to achieve commercial success reveals ample opportunity for increased penetration by 

these lightweight alternatives. Aluminum has already achieved a significant share of 

powertrain and heat exchanger applications, including transmission cases, driveshafts, 

pistons, engine blocks, and cylinder heads.(Cole and Sherman 1995; Jackson 1997; 

Kelkar, Roth et al. 2001) But in order to achieve much greater penetration in overall 

automotive use, aluminum will have to be used more extensively in structural bodies and 

closures. (Kelkar, Roth et al. 2001) Some commercial use of aluminum in these areas has 
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been successful, but it has yet to be widely adopted outside of low-volume sports and 

luxury cars (Audi A8 body) or special applications that place a premium on weight 

savings (Prius liftgate, Ford F-150 hood, among other vertically hinged panels).   

 Most of the plastics in vehicles are low-performance materials (Fuchs, Field et al. 

2008), but several prominent uses of high-performance composites have been adopted in 

structural applications as well. For example, structural composites were first used in a 

mass-produced vehicle on the closure panels of the 1953 Corvette and have since been 

successful in the Pontiac Fiero (closure panels), early Saturn sedans (closure panels), and 

Ford trucks (pickup box). (Automotive Composites Alliance) 

 Still, a major impediment to greater adoption of aluminum and composites in the 

auto industry is the perceived expense that manufacturing with them entails. Industry 

discussions about materials alternatives such as aluminum or structural composites begin 

and end with cost (Corbett 2004; Diem 2005), so it’s essential to understand the 

production economics of different materials technologies before trying to characterize 

their commercial attractiveness. 

1.2.2 Materials production economics 

The three primary tasks required to produce a painted car or truck body are parts 

fabrication, body assembly, and paint. Materials choice affects each of these tasks in vital 

ways, because the decision to manufacture components out of a specific material entails 

capital investments in material-specific processing equipment that can vary widely by 

type, cost, and operation.     
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Parts Fabrication  

 Parts fabrication comprises the processes that form and shape materials into 

components which combine to make up body and closure subsystems. Fabrication in 

metal can be accomplished by several methods that use tools known as dies to shape 

different raw material forms. In stamping processes, metal sheets are “stamped” by dies 

in presses; in extrusion, metal billets are forced through a die; in casting, metal is poured 

into a die from a molten state or forced by pressure, vacuums and other means. 

Common composite fabrication methods also employ machines and dies in 

analogous processes. For example, stamping-type composite processes include sheet 

molding compound (SMC), in which sheets of composite material are pressed between 

matched dies, and bulk molding compound (BMC), in which larger bulk composites are 

pressed. Casting-type composite processes include structural reaction injection molding 

(SRIM) and resin transfer molding (RTM), in which flowing composite resin is forced 

into a die. In each of these cases the required processing forces are smaller than in the 

analogous metal forming processes because the forces needed to shape composites or 

cause them to flow are less than the corresponding forces needed in steel forming. 

Yet composite fabrication techniques that rely on flow processes generally require 

significantly longer forming times than steel forming methods, which means that 

composite fabrication can entail investing in multiple machine lines to assure sufficient 

operating capacity.  Table 2 highlights some details of this capital cost factor, as well as 

other key dynamics that drive fixed and variable costs for parts production in steel 

stamping and two composite processes: SMC and SRIM. As the upper row indicates, the 

cost per machine for composite processes can be 1/10 the cost of a steel stamping 
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machine, but composites require 20 to 40 times the processing time.  Similarly, SRIM 

dies cost 1/20 that of steel stamping dies but wear out 5 times faster.  

The information in the bottom three rows of the table affects variable costs. The 

ratio of raw material cost per mass and material strength per mass is a rough measure of 

how expensive the material cost of producing a comparable part will be. For example, 

SMC costs 100% as much as steel per kg but is also 30% stronger per kg, which implies 

the material costs to produce a functionally equivalent SMC part will be about 70% 

higher, everything else being equal. Finally, the last row lists overall reject rates, which is 

the average fraction of defective parts for the entire fabrication process. Higher reject 

rates (especially for SRIM) increase variable costs across the board, because for every 

good part produced a certain number of extra discarded parts must be produced as well 

 

typical values  
to produce one part  

Steel Stamping 
Sheet Molding 

Compound 
(SMC) 

Structural Reaction  
Injection Molding 

(SRIM) 
    

Method sheet pressing sheet pressing liquid molding 
    

Fixed Cost Drivers    
Investment per Machine $10.0M $1.0M $2.0M 

Cycle Time 0.10 min 2.0 min 4.0 min 
    

Investment per Die $2.0M $0.2M $0.1M 
Die Life 1.0M cycles 1.0M cycles 0.2M cycles 

    
Variable Cost Drivers    

Raw Material Cost per kg $1.0 /kg $2.0 /kg $2.5 /kg 
Strength per kg  35.0 47.0 67.0 

Raw Material Cost per kg 
/Strength per kg 0.03 0.04 0.04 

    
Overall Reject Rate 0.5% 1% 25% 

Table 2  Key cost parameters for metal and composite manufacturing methods 
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 These back of the envelope figures indicate typical production-volume cost 

behavior similar to those shown in Figure 3. As the graph shows, steel exhibits excellent 

economies of scale at medium and high production volumes while composite 

manufacturing tends to have a relatively higher and flatter unit cost curve in the same 

volume range. Steel and composite fabrication generally has cost parity with steel 

stamping at low to medium production volumes, between 30,000 and 80,000 parts per 

year. Below these volumes composite fabrication is cost competitive with conventional 

steel stamping, which is one reason why successful composite applications tend to be 

low-volume vehicles such as the Corvette. (A premium for lightweighting in sports and 

luxury cars is another reason.)  
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Figure 3  Typical cost - volume curves for parts fabrication 
 

Figure 3 also depicts a typical cost-volume curve for parts fabrication using 

aluminum stamping. Aluminum stamping is more expensive than steel fabrication at 

every production volume due to higher material costs, higher reject rates, more expensive 

tooling costs, and slower cycle times. In aluminum stamping, for example, presses 

typically run 20% slower than steel stamping presses and 20% more parts are rejected. 
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Total die costs for aluminum stamping are commonly 20% more than steel. (The surfaces 

must be polished more than steel dies because aluminum scratches easily, and aluminum 

often requires more forming hits—thus more dies—to shape a part). Additionally, 

material costs for stamping a functionally-equivalent part in aluminum are higher because 

aluminum is three times as expensive as steel sheet per kg but only twice as strong per 

kg.  In sum, aluminum stamping cost curves have the shape of steel stamping curves but 

are shifted up.  

 

 

 

Body Assembly 

After component parts are formed, they are assembled into subsystems by means 

of various joining methods. Steel and aluminum components are usually assembled with 

some mix of welding, rivets, adhesives, or hemming processes that fold together the 

edges of mated parts. Composite subsystems are usually assembled by some type of 

adhesive bonding process.  

The assembly cost required for subsystems in different material classes is driven 

by the type of process used and the number of assembly operations required. Composite’s 

ability to form complex shapes reduces the need for many of the supporting components 

found in steel subsystems and can sharply reduce the total number of parts—and thus 

assemblies, required. This parts-consolidation effect becomes greater as the complexity 

of the subsystem grows. For example, a composite door might be designed in four parts 

as opposed to six for a steel door (a difference of only two parts), whereas a full 



 22 

composite body-in-white could be designed in 25 parts as opposed to 150 to 200 parts for 

a steel or aluminum body. Although no fully-integrated composite vehicle bodies have 

been commercially produced, a previous study has demonstrated composite body designs 

that can reduce assembly costs by 60% at low volumes (~50,000 per year) and 30% at 

high volumes (>200,000 per year). (Fuchs, Field et al. 2008)  

After the body has been assembled it is sent to the paint shop. 

 
Paint 
 An automotive paint shop houses extremely complex and expensive robotic 

equipment under tight environmental controls. Although cost figures vary, typical paint 

shop investments are approximately $300 - $500 million for a fully equipped 

shop.(Automotive News 2007) The painting process usually relies on an electrically-

activated paint that attaches easily to steel. Aluminum typically requires a special surface 

treatment in order to pass through the same process, while composites require at least a 

special surface treatment and in some cases an offline painting process which can impose 

color-match complications and additional costs.  

 After the body has been painted it is sent to general assembly where other 

sub-assemblies are attached. General assembly costs will be fairly consistent regardless 

of the material choice for body and closures so I will not go into detail here.  

 

The finished vehicle is then ready for sale. While the manufacturing processes 

highlighted in the previous discussion influence an automaker’s capital investments and 

operating cost factors, vehicle sales drive firm revenues—and vehicle sales are driven by 

consumer preferences. The next section covers the relationship between materials 
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technologies and some key vehicle performance attributes that affect consumer 

preferences for new vehicles.  

 

1.2.3 Vehicle lightweighting, performance, and consumer preferences 

 Car and truck buyers indicate preferences for vehicle performance attributes that 

materials choice may affect, like fuel economy and acceleration, but consumers are 

generally indifferent to the actual materials used. Fuel economy and acceleration 

improvements can both be achieved by reducing vehicle mass via materials-enabled 

lightweight designs, but the gains are usually small unless entire subsystems are 

lightweighted. 

 For example, a commonly used engineering rule of thumb holds that a 10% 

vehicle mass reduction results in a 5% fuel economy improvement.  Applying this rule 

and an estimate that a 10% vehicle mass reduction results in a 10% 0-60 mph time 

improvement, Table 3 presents the fuel economy and acceleration improvements 

resulting from different lightweighting strategies for a hypothetical car with baseline 

mass of 1500 kg, fuel economy of 25.0 mpg, and 0-60 time of 8.00 seconds. 

 Mass 
 (kg) 

Mass Reduction 
 (kg)         ( %) 

Fuel 
Economy 

(mpg) 

0-60 
mph  
(sec) 

      
Baseline Vehicle 1500 0      0 25.0 8.00 
      
With…      

Lightweight Hood 1494 6.0 0.4 25.1 7.97 
     

Lightweight Closure Set 1455 45.0 3.0 25.4 7.76 
     

Lightweight Front End 1470 30.0 2.0 25.3 7.84 
     

Lightweight Body 1420 80.0 5.3 25.7 7.58 
     

Lightweight Body and Closure Set 1375 125.0 8.3 26.0 7.33 
Table 3  Fuel economy and acceleration improvements for different degrees of lightweighting 
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  As the table indicates, large performance improvements require radical 

lightweighting strategies (such as lightweighting the entire body and closure set). But in 

the highly competitive vehicle market, even a few tenths of a mpg improvement or a half 

second drop in 0-60 time made possible with less aggressive strategies could be the 

difference between a commercial success and a total flop. Determining the value of a 

lightweighting strategy ultimately requires understanding how consumers value fuel 

economy and acceleration.  

 The implied market consensus for the past decade was that American consumers 

valued fuel economy much less than they valued acceleration, as evidenced by the 

relative improvements of fuel economy and acceleration in the average U.S. car. 

According to work by Bandivadekar et al, changes in the average U.S. car from 1995 to 

2006 reflect a mere 8% emphasis on reducing fuel consumption (ERFC) (Bandivadekar, 

Cheah et al. 2008), which the authors define as  

eperformancandsizeconstantwithpossiblereductionFC
realizednconsumptiofuelActual

%ERFC =  

Equation 1 

  

The authors find that the technology gains which were realized in the average car 

during this period were used to improve other performance measures, including 0-60 

time, which indicates a greater relative preference for acceleration as opposed to fuel 

economy, or the perception of such a consumer preference by automakers. Many studies 

have attempted to model the manifestation of these preferences in terms of demand 

elasticities of fuel economy and acceleration, but these backward-looking studies are not 
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as useful to the work at hand because currently changing industry dynamics mean that it 

would be imprudent to rely on historical buying patterns to predict future trends.   

Yet one past market trend is insightful, if only because it documents another 

driving force that can steer performance characteristics in the domestic vehicle fleet—the 

influence of government regulation. As Bandivadekar et al also find, ERFC was 90% for 

the decade from 1977 to 1987, which began three years after the Arab oil embargo, 

gasoline price spikes, and the enactment of fuel economy regulation in the U.S. Although 

the authors do not distinguish between gasoline price effects and regulatory effects, the 

result suggests that fuel economy regulation, in addition to market forces, can drive 

automakers’ technology decisions. (Bandivadekar, Cheah et al. 2008) 

 

1.2.4 Fuel economy and emissions regulation 
Commercial vehicles sold in the U.S. are subject to three main areas of regulation: 

safety, emissions, and fuel economy.  Although safety regulations affect automakers’ 

materials choices, new fuel economy regulations and possible new emissions regulations 

have a greater potential to significantly alter materials-related technology decisions, so I 

will concentrate on these latter rules.      

 

Fuel Economy Regulation 

Fuel economy standards for new passenger cars sold in the U.S. were first enacted 

in 1975 and remained unchanged for decades until President Bush signed a December 

2007 law that updated the original Corporate Average Fuel Economy (CAFE) legislation.  

The updated law requires automakers’ new car and truck fleets sold in the U.S. to achieve 
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35 miles per gallon (mpg) by 2020, a 27% increase over the current 27.5 mpg car 

standard and a 58% increase over the current 22.1 mpg light truck standard. (Figure 4)  
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Figure 4  CAFE standards. Source: National Highway Safety Administration. 
 

 

A congressional majority finally rallied around a CAFE update because of 

bipartisan support for the measure. Unease over the continuing Iraq war, rising gasoline 

prices, and a general weariness about the country’s energy and economic security 

inspired conservatives to join with established liberal groups concerned with 

environmental issues in pushing for tighter fuel economy regulation. (Adair 2007) 

Concerns about energy security and economic stability in the wake of the Arab oil 

embargo motivated the 1975 CAFE law, so it should not have come as a surprise that the 

same mix of issues combined again to spur important legislation.   

Although the new 35 mpg standard is less than environmentalists had lobbied for, 

it still represents a challenge for the auto industry—especially the Detroit automakers—

which by the end of the 1990’s had become heavily reliant on sales of inefficient SUV’s 

and historically accustomed to unchanging fuel economy standards. (Bradsher 2002) As 

Figure 5 illustrates, the actual fuel economy of new cars and the actual fuel economy of 
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new trucks remained fairly steady after CAFE regulation stagnated in 1985, and the 

average fuel economy of the combined fleet in fact dropped slightly because the sales 

fraction of more inefficient trucks increased dramatically.   

U.S. Light Duty Fleet Fuel Economy by Vehicle Type
(Three year moving average)
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Figure 5  U.S. light duty fleet fuel economy by vehicle type. Source: EPA 
 
  

Now that a new CAFE standard has been set and automakers have to consider 

new technologies and production strategies to meet it, the more interesting part of Figure 

5 is the period from 1975 to 1985, which documents the fleet changes that occurred in the 

first decade after the first CAFE rules were issued. Investigating the details underlying 

these changes indicates that, if history is a guide, CAFE increases and vehicle weight 

reduction may go hand in hand. From 1975 to 1985, as CAFE took effect and the 

standard was progressively raised each year, a 20% weight reduction accompanied a 60% 

fuel economy increase. (Figure 6) 
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U.S. New Car Fuel Economy and Inertia Weight
(Three year moving average)
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Figure 6  U.S. new car fuel economy and inertia weight (empty vehicle weight plus 135 kg). Source: EPA 
 

 
 Although the auto industry has just begun to consider the new CAFE standard, 

some insiders predict a reprise of the weight reduction trend seen after the original 1975 

CAFE rules were issued. (Snavely 2007) Still others caution that higher cost and greater 

energy use in raw material production phases should preclude their use as a strategy to 

meet the new fuel economy standard. (Murphy 2008) In any event, increasing industry 

attention is being focused on lightweight materials as a possible means to achieve vehicle 

performance improvements that anticipate rising CAFE standards.  

 

Emissions Regulation 

Historically, regulation of motor vehicle emissions by the Environmental 

Protection Agency (EPA) under the Clean Air Act applied to emissions such as CO, NOx 

and particulate matter (PM) that cause visible pollution like smog and acid rain. These 
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types of emissions can be controlled with “end-of-pipe” measures such as catalytic 

converters that treat engine exhaust before it is expelled into the environment.  

But the recent Supreme Court decision Massachusetts v. EPA forces EPA to 

regulate CO2 from motor vehicles as well, which can only be controlled by reducing the 

amount of gasoline that a vehicle combusts, tantamount to controlling its fuel economy. 

(Eilperin 2007) However, EPA has not issued a vehicle CO2 rule yet and it is not clear 

how an EPA CO2 rule would coexist with the congressional CAFE standard, whether it 

would be more or less stringent and in what respect. (Eilperin 2008) Moreover, the Clean 

Air Act contains a provision that allows California to set more stringent vehicle 

emissions standards than EPA levels due to its particularly acute pollution problems, so 

long as the state receives a waiver from the agency. EPA has granted every one of 

California’s waiver requests to set more stringent CO, NOx and PM, and other states 

have the option of adopting either the EPA emissions standard or the tighter California 

emissions standard. This progressive prod—known as the “California Effect,” has helped 

push emissions standards to stricter and stricter levels over the years in contrast to the 

usually stagnant CAFE. (Vogel 2000) 

Yet even before EPA has issued its own CO2 rule it has denied California’s first 

request to set its own CO2 emissions standard under the Clean Air Act provision. 

(Clayton and Wood 2007) The outcome of this regulatory struggle will play out over the 

coming years and will only add to the uncertainty surrounding U.S. climate change 

policy, which might also include a cap-and-trade CO2 emissions scheme or a carbon tax 

in the near future, with its own uncertain effects on vehicle markets and vehicle 

technology.     



 30 

1.2.5 Demand uncertainty 

 Like the anticipation of an uncertain future regulatory action, the expectation of 

uncertain future annual sales levels can have profound effects on technology choice for 

an automaker, as the cost-competitiveness between technology substitutes is different at 

low-volume and high volume production. (See Figure 3) Moreover, annual sales levels 

can vary significantly during the five to seven year production life for vehicles, limiting a 

firm’s ability to make accurate capacity, investment, and technology decisions up front.  

 Countless factors may affect annual sales volumes, from macroeconomic 

variables like interest rates and income levels to market competition and changing 

purchase preferences. From the perspective of an advanced product planner, the exact 

reason for sales volatility isn’t as important as the degree of volatility itself.  

Table 4 presents sales figures for three models, the Ford Focus, Infiniti G35, and 

Toyota Prius, over their first five full years of production. As the table shows, sales trends 

follow different patterns: the Ford Focus loses significant numbers each year, the Infiniti 

G35 fluctuates around a mean value, and the Toyota Prius sees dramatic growth. These 

trends are representative of the market as a whole—vehicles sales levels move in 

different directions and can fluctuate significantly from year to year. 

 I will investigate sales volatility in more depth later, but basic evidence of 

significant volatility in the U.S. vehicle market is sufficient to document this factor as a 

possible technology driver of interest.   
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vehicles sold in U.S.  
(full production year) Year 1 Year 2 Year 3 Year 4 Year 5 

      
Ford Focus 286,166 264,414 243,199 229,353 208,339
Infiniti G35 64,730 71,177 68,728 60,741 71,809
Toyota Prius 15,556 20,119 24,627 53,991 107,897
Table 4  Annual sales data for three model vehicles. Source: Automotive News 
 

1.3 Relevant Materials Selection and Uncertainty Analysis 

Literature Review  

1.3.1 Materials selection and competitiveness 

 The academic literature on materials selection presents several different methods 

and no consensus on the issue. Ashby proposes techniques that rely on plotting and 

ranking a constellation of function-specific performance indices. These “Ashby plots” are 

generated by analyzing the desired design function and determining which design aspect 

should be constrained, minimized, or maximized. For example, the material that 

maximizes E1/2/ρ, where E is Young’s modulus and ρ is density, will have the lowest 

mass for a beam of a desired stiffness. (Ashby, Brechet et al. 2004) This material index 

can be plotted against another, say, raw material cost, and the designer can then visualize 

the tradeoff between performance and material cost. 

 Rather than simply visualizing the choices on a material index plot, Ashby also 

proposes optimization methods to arrive at the best materials choice. These methods 

require quantifying the performance indices to be optimized and then determining 

tradeoff surfaces among multiple indices based on “exchange constants,” which Ashby 

writes “measure the change in value for a unit change in a given performance metric, all 

others held constant.” (Ashby 2000) (Ashby’s exchange constants are also known as 
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“shadow prices” in the optimization literature.) But calculating the appropriate exchange 

constants still requires determining an value function. 

 While Ashby offers some possible value functions that might make sense to a 

designer—such as cost minimization—he errs by substituting raw material cost for final 

production cost, which is the total cost a firm sees. More generally, he doesn’t develop a 

systematic method for determining the value function. Field, however, proposes using 

multi-attribute utility analysis to determine a value function in materials selection 

problems. (Field 1985) This method requires first surveying designers to establish their 

preference for design attributes and then constructing utility curves based on the 

responses. Field notes that a drawback to this approach is the effort required to conduct a 

proper survey and generate utility curves. Another limitation of this method, though, is 

that the utility function Field describes is derived without direct input from consumers. 

The true utility of the product—from the firm’s perspective—originates from its sales in 

the market, but these market preferences are only indirectly incorporated in the utility 

function by means of engineers’ preferences for product attributes that they believe to be 

aligned with consumers’ interests.  

 On a more practical level, Arnold surveys materials selection issues in automotive 

applications and concludes that a firm needs to make decisions based on risk and reward, 

especially when considering a lightweight materials alternative. After outlining materials 

production economics and the then-current state of manufacturing technology, he writes: 

“The best strategy for offsetting the risk and cost against the benefits of new technology 

is to apply it where current technology remains an acceptable alternative.” (Arnold 1993)   



 33

Several studies have applied materials selection methods and cost analysis to 

investigate the competitiveness of alternative materials in the auto industry. Field et al 

combine utility analysis with process-based cost modeling and other disciplines to 

hypothesize on market drivers for materials development in general, finding that 

economics, environment, and business dynamics will drive decision-making in the near 

future. (Field 2001) More specifically, Kelkar et al use process-based cost-modeling to 

understand the cost-competitiveness of aluminum bodies compared to steel and conclude 

that while most aluminum bodies are still more expensive than steel, opportunities exist 

to improve aluminum’s competitive position. (Kelkar, Roth et al. 2001)  Kelkar’s 

analysis corrects Ashby’s error by analyzing production cost as opposed to raw material 

cost, but Kelkar’s analysis is still limited because it does not address the benefits of 

lightweighting, that is, the value imparted in products designed with lightweight 

materials. 

Furthermore, Field et al elaborate on process-based cost modeling as a tool to 

perform cost estimation and understand cost drivers in automotive materials applications, 

but still ignore lightweighting benefits. (Field, Kirchain et al. 2007) In a similar vein, 

Fuchs et al employs process-based cost modeling extensively to project the costs of steel 

and composite bodies, finding that composite designs are cost-competitive with steel at 

production volumes less than 100,000 vehicles per year. (Fuchs, Field et al. 2008)  

At a higher level, the National Academy of Sciences released a report on CAFE in 

2002 which included an analysis of technologies that could potentially improve the fuel 

economy of the domestic fleet. This analysis considered lightweighting only in a general 

sense, as an emerging technology that could achieve a 3 to 4 percent improvement in fuel 
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consumption at a retail cost of $210 to $350 per passenger car. (National Academy of 

Sciences 2002) 

Less work has been published on the benefits of automotive lightweighting. Most 

published works have only considered fuel economy improvements (as opposed to 

acceleration and other performance gains as well), and have only analyzed the benefit in 

terms of the discounted fuel savings that improved fuel economy confers on the vehicle 

owner. These analyses do not make lightweight materials—or any fuel economy for that 

matter—appear very valuable. For example, Green shows that for most cars, even a 10 

mpg fuel economy improvement is only worth about $100 in net value to the consumer 

(which he defines as the value of discounted fuel savings minus the increased cost of the 

car). (Green 1997)  

 

 

1.3.2 Regulation effects and uncertainty analysis 

  Recent work by Michalek et al investigates the differing effects on 

automakers’ technology strategy that various fuel economy regulation schemes 

(including CAFE, CO2 tax, and diesel mandates) might have. Michalek found that in an 

oligopolistic market, firms will not produce smaller and more efficient engines without a 

regulatory standard. (Michalek, Papalambros et al. 2004) Yet Michalek’s study only 

considered engine technologies, not materials technologies, and his analysis did not 

consider any uncertainty effects.  

On the topic of uncertainty in business decisions, the finance literature abounds 

with methods for dealing with uncertainty. Some of the most relevant work to this thesis 
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springs from the financial options and real options fields. For example, de Neufville et al 

describe spreadsheet simulation methods for calculating the improvement in net present 

value (NPV) of a construction project by explicitly considering demand uncertainty and 

options to expand. (Neufville, ASCE et al. 2005) De Neufville shows that typical NPV 

analyses err when they use expected values (such as the expected annual demand for a 

product) to model uncertain processes (like consumer demand over time). The critical 

flaw in this method is that it assumes that the expected value of the project over all 

scenarios is equal to the value of the expected scenario. This is almost never the case in 

real systems and business cases, where physical constraints and asymmetric returns 

demand a more explicit treatment.   

Other real options work employs Black-Scholes or binomial lattice methods 

(Herath and Park 2002) to model uncertainty. Yet none of these works has yet been 

applied to automotive manufacturing with different materials technologies.       

1.3.3 Gap Analysis 

 The automotive materials selection literature has presented methods that consider 

fundamental materials properties (Ashby, Brechet et al. 2004), production cost (Kelkar, 

Roth et al. 2001; Field, Kirchain et al. 2007; Fuchs, Field et al. 2008), and engineer-

centric utility analysis, (Field 1985), but none have presented a treatment that fully 

evaluate the true costs and benefits of materials selection to the firm: final production 

cost and consumer-driven market value, and none have considered the effects of demand 

uncertainty or changing regulations on materials choice. On the other hand, the finance 

literature has presented methods that explicitly analyze business projects subject to 

uncertainties, though not with respect to the automotive materials selection problem. 
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Thus, the current opportunity for this thesis to contribute to the literature is to combine 

insights in techno-economic automotive materials selection together with a financial 

analysis of project value that explicitly models vehicle demand and regulatory 

uncertainty. 

 The analysis should distinguish between different materials technologies (not just 

lightweighting in general) and investigate how the ability to achieve lightweight designs 

and the varying capital intensity of different materials classes yields advantages or 

disadvantages under uncertain conditions similar to those observed in the actual vehicle 

market. Moreover, the value of materials choice should be based on fuel economy and 

acceleration benefits, and should take into account the utility of the end user, not just the 

preferences of the engineer-designer.   

 

1.4 Thesis Problem and Research Questions 
 

Automotive materials choice is a value proposition. The decision to manufacture 

vehicle components using a particular material entails a capital investment in the 

infrastructure to process and form parts and the ongoing variable costs associated with 

those operations. In turn, use of the material—especially lightweight materials—

influences vehicle attributes like fuel economy and acceleration which determine market 

appeal and affect sales revenues. An automotive firm should evaluate materials 

alternatives just as it would other business opportunities, using net present value as an 

objective metric.  

Yet future cash inflows and outflows from a vehicle project are highly uncertain.  

Demand varies from year to year, which means that sales revenues and production 
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volumes are not steady either. Likewise, regulatory constraints may change over the life 

of a project. 

Similar NPV analyses of complex systems like this usually present a deterministic 

treatment of salient uncertainties by studying their growth and variance and then picking 

expected (mean) values for use in the analysis. But these methods implicitly assume that 

the observation of expected values is equal to the expected value of all observations. That 

condition only holds for linear, symmetric systems, which is almost never the case in real 

systems.  

In the case of a vehicle project, fixed plant capacity present a real upside limit to 

annual production and sales revenues when market demand rises. When demand falls, 

however, the amount of money an automaker can lose is only limited by the size of its 

investment. This asymmetry may alter the results of an NPV comparison between 

incumbent materials technologies such as steel which involve more capital-intense 

production methods than lightweight alternatives like composites.  With the growing 

emphasis on reducing fuel use and increasing vehicle efficiency, a more sophisticated 

characterization of lightweight materials’ competitiveness in automotive applications is 

timely and important. 

 

In light of these issues, this thesis will investigate the following questions: 

 

1. How can consumer preferences for fuel economy acceleration, in conjunction with 

demand uncertainty, be modeled to project the value of automotive materials choices? 
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2. Do market and/or regulatory uncertainty advantage composite materials relative to 

incumbent metals technologies in automotive applications? What is the nature of this 

advantage? 

 

3. How can auto industry regulators make use of the above outcomes pertaining to 

lightweight materials’ competitiveness to better inform fuel economy policy decisions 

which encompass the technological feasibility of new regulations?  



Chapter 2: Methodology  
 

This chapter presents the methods I employed to answer the questions posed by 

the previously stated thesis problem.  The heart of my approach is a spreadsheet-based 

tool which calculates the expected net present value of a multi-vehicle fleet project over 

several time periods. The spreadsheet tool functions by linking several models that map 

initial technology and production decisions to final vehicle attributes, fixed and operating 

costs, sales revenues, and regulatory penalties. As a whole, this framework comprises an 

NPV optimization model. The following sections explain this framework and the 

underlying models in detail, and discuss how demand uncertainty and regulatory 

uncertainty are treated.  

2.1 Modeling Framework 

Figure 10 illustrates the overall framework that links initial decisions about 

vehicle technology, prices, and production capacities to models that determine 

intermediate results necessary to calculate an entire project NPV. This framework is 

explained in smaller pieces, beginning with the initial decision variables and working up 

to the final output.   

The first task required is to specify what technology the modeled vehicles are to 

be outfitted with, and what prices they will sell at.  In the work at hand, the technology 

decisions are limited to the materials choice for the body-in-white, the materials choice 

for the closures set, and engine power—but the general approach could be applied to any 

vehicle technology set. Next, a performance model maps the pertinent technical 

characteristics of the complete vehicle (mass and engine power in this case) to the salient 
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on-road attributes that influence consumers’ purchasing decisions, which are limited to 

fuel economy (mpg) and acceleration (0-60 time) in this study. A market model then 

takes the outputs of the performance model together with the price decision as inputs to 

predict what fraction of the new car or truck market the specified vehicles would garner.  

Given a market size, the expected annual sales in the first full year of production can then 

be calculated. These initial steps are outlined in Figure 7.   

Note that the market model is only used to predict the expected sales level in the 

first year. In subsequent years, the price of the vehicle is held constant and demand 

variations are modeled by means of a demand uncertainty model, explained later.  

 

 

Figure 7  Performance model and market share model links 
 

Once the expected annual sales level is year one is predicted by the market share 

model, a production capacity decision needs to be made. As the method is designed to be 

able to evaluate a fleet of different vehicles that might sell at different production 

volumes, I have defined the production capacity decision as a percentage of the expected 

annual demand in the first full year of production, rather than an absolute capacity. Thus, 

if the production capacity decision is 100%, a plant is modeled that can produce just as 

many vehicles as are expected to be sold. Capacity decisions over 100% imply extra 

capacity that can meet rising demand. Once this production capacity is determined, a 
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model of production cost projects the required capital investments. These additional steps 

are added to the modeling illustration in Figure 8.   

 

 

Figure 8  Performance model, market share model and cost model links 
 

Next, I incorporated a multi-period demand uncertainty model to project the 

stochastic nature of vehicle sales from year to year. The uncertainty model takes the 

expected annual sales level in year one as a starting point and projects a sales probability 

distribution over the life of the project. The sales probability distribution is used to 

calculate a distribution of sales revenues and, with the cost model, a distribution of 

variable costs. These additional steps appear in Figure 9.  

 



 42 

 

Figure 9  Performance model, market share model, cost model and demand uncertainty model links 
 

Finally, I included a regulation policy model that determines compliance or 

noncompliance with a fuel economy policy that mimics CAFE.  These calculations are 

based on the fuel economy of the modeled vehicles and their probabilistic sales levels, so 

the regulatory model calculates expected CAFE values and expected CAFE penalties.  

After the expected CAFE penalties are assessed, all cash flows are known and the 

expected NPV of the vehicle fleet project can be calculated. This completes the modeling 

framework, as shown in Figure 10. 
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Figure 10  Entire modeling framework 
 
 

2.1.1 Solution Method 
 
 Formally, the problem I am trying to solve by the above modeling framework is 

to find the set of vehicle price, technology, and production capacity decisions that 

maximize the expected net present value of the project: 

)]([argmax xNPVE * x
x

=  

Equation 2 
 
where x* is the set of optimal price, technology, and capacity decisions. Generally,  

]][],[],[[ l1k1j1 capcap  cap techtech  tech priceprice  pricex KKK ∈∈∈=  

Equation 3 
 
for j price decisions, k technology decisions, and l capacity decisions. 

 I chose to solve the problem by explicit simulation, that is, by running through an 

exhaustive set of all decision variable combinations of price, technology and production 

capacity. 
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 Although the process becomes computationally intense as the number of decision 

variables increases, this method allows the user to easily track down and debug modeling 

problems or confusing outputs, which proved to be of great value during the early phases 

of this research. Other methods may be more suitable as the problem scales, but for a 

proof-of concept construction this basic simulation strategy was successful.   

 

2.2 Model descriptions 

 In the interest of minimizing computation intensity, I reduced the underlying 

quantitative models to the key relationships that are being investigated in this thesis. In 

some cases this meant translating a complex cost model to just two numbers: variable and 

capital costs, and in other cases it meant converting a thousand-variable vehicle 

performance simulation model to a regression that can approximate fuel economy or 

acceleration using just mass and engine horsepower. The following sections describe 

these modeling activities.  

 

2.2.1 Performance model 

 The performance model that I incorporated in the optimization model consists of a 

set of regression equations which approximate fuel economy and acceleration test results 

from ADVISOR vehicle simulator software, developed by the National Renewable 

Energy Laboratory of the U.S. Department of Energy and now available commercially 

from AVL List GmbH. (ADVISOR Downloaded February 2008) I chose ADVISOR over 
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other vehicle simulators because of its flexibility, documentation (Markel, Brooker et al. 

2002), and previous use in similar published works (Michalek, Papalambros et al. 2004).  

 ADVISOR models vehicle performance by means of a predominantly backward-

facing simulation tool that runs in a MATLAB programming environment. When a user 

calls a test in ADVISOR, such as the standard EPA fuel economy test, ADVISOR sends 

a signal to the tires to attain a certain drive profile (speed changing with time), which 

propagates back through the rest of the vehicle systems (wheels, differential, 

transmission, engine, etc.).  ADVISOR then calculates the required vehicle dynamics, 

fuel use, and emissions from the test.  

 Although ADVISOR allows a user to study the performance effects of altering 

vehicle systems in countless ways, I limited my investigation to simulations that varied 

(1) total vehicle mass, (2) maximum engine power, and (3) final drive ratio. The first two 

variables represent the design outcome of a set of materials and engine technology 

decisions, while the final drive variable represents the ability of vehicle designers to tune 

the powertrain in favor of either fuel economy or performance at no cost. (The final drive 

ratio is the ratio of the last gearset before the axle. A higher final drive ratio yields better 

acceleration but a lower ratio gives better fuel economy.) This powertrain tuning concept 

is illustrated in Figure 11, which plots the fuel economy – acceleration tradeoff for 

vehicles equipped with either a low power or high power engine. Furthermore, the effect 

of mass on vehicle performance is shown by plotting the performance curves for each 

engine when equipped in a light or heavy vehicle.  
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Figure 11  Powertrain tuning curves for a low power and high power engine  
 

 The pair of performance curves shown in Figure 11 plot the fuel economy – 

acceleration tradeoff for two engines (low power, high power) and two vehicle masses 

(light, heavy). As the figure indicates, without altering the transmission tuning (fd ratio) 

or engine, reducing vehicle mass improves fuel economy and acceleration concurrently—

the performance curves shift up and to the right as the labels on the low power engine 

curves explain. However, increasing the final drive ratio alone improves acceleration but 

lowers fuel economy—the performance moves along a curve from low fd ratio to high fd 

ratio, as noted on the high power engine curves. Finally, switching from the low power 

engine to the high power engine while holding the other variables constant shifts the 

curve to the up and left—again increasing acceleration but reducing fuel economy.  
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 The final drive ratio is just one powertrain variable that can be altered to move 

along the tuning lines, but I have used it as a substitute for all tuning options available. 

While this simplification doesn’t capture the resolution of all powertrain tuning options 

available, it nonetheless provides a useful insight into the relevant fuel 

economy/acceleration tradeoff offered by the materials and engine options studied here.  

 To generate the performance curves that were implemented in the integrated NPV 

model I ran multiple ADVISOR simulations of fuel economy and acceleration tests on a 

standard passenger car model, holding the engine power constant while varying total 

mass and final drive ratio. I then performed statistical regressions on the results of the 

fuel economy and acceleration tests, which yielded a set of equations that constitute a 

“performance model” for a vehicle with a given engine power, predicting how its fuel 

economy and acceleration change over a range of total mass and tuning options. I then 

repeated this exercise with the same passenger car model but equipped with a more 

powerful engine to generate another set of performance curves. I assumed that these 

performance curves apply to all vehicles in the modeled fleet, implying that vehicle class-

specific effects (such as aerodynamic drag) are small. The analytical form of these 

regression functions is described in more detail in chapter three because they are case 

study specific. 

 

2.2.2 Market model 

As described previously, the market model maps the fuel economy and 

acceleration outputs of the performance model, together with the price decision, to 

determine the expected market share in the first full year of production. In light of the 
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importance of incorporating current market demand, I chose to base this model on work 

by Catarina Bjelkengren, who has developed a method for determining relationships 

between vehicle attributes and market share from data obtained from My Product 

Advisor, an online marketing tool operated by Market Insight Corporation and available 

at www.myproductadvisor.com. ("My Product Advisor") The following sections outline 

Bjelkengren’s method and my application thereof, though the underlying approach is 

explained in more detail in her MIT master’s thesis. (Bjelkengren 2008) 

My Product Advisor gives product advice to potential car buyers and compiles 

market data for manufacturers by means of an online survey. The survey asks potential 

consumers a series of questions about their preference for brand, price, quality, 

performance, safety, etc., and matches the answers to current model vehicles. Market 

Insight Corporation then translates these stated preferences to relationships between 

vehicle attributes and market share. That is, given a vehicle with known attributes and 

price, Market Insight applies the stated preferences of survey respondents to predict the 

resulting market share. While certain systemic errors limit the precision of these absolute 

market share predictions, Market Insight Corporation advises producers to use their tool 

as a way to gauge the relative effects of different strategies. For example, instead of using 

My Product Advisor to estimate the total market share of a new vehicle, Market Insight 

advises automakers to test different attribute/price strategies against one another to see 

which offers the best relative market share change. 

These differential relationships form the basis of the market model. The starting 

point is a reference vehicle (or multiple reference vehicles if a fleet is being modeled) of 

known fuel economy, acceleration, and price that is the same type of vehicle (small, mid-
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size, luxury, etc.) being modeled. By varying one attribute of the reference vehicle in the 

Market Insight website and recording how Market Insight predicts that market share 

should change, one can approximate the relationship for any vehicle of that type.  

As the optimization model is simulating vehicle models with a particular 

combination of attributes, the market model predicts a delta market share for that 

particular vehicle relative to the reference vehicle of similar type. (Equation 4) 

vehiclereferencevehiclemodeled sharemarketsharemarketsharemarket −=Δ  

Equation 4 

 
 To calculate the delta market share, I divided it into three components: a delta 

market share due to a change in acceleration, a delta market share due to a change in fuel 

economy, and delta market share due to a change in price. Each of these relationships is 

based on a regression of Market Insight data for the reference vehicle, varying the 

pertinent variable and recording the resulting market share change. The total delta market 

share is the sum of each delta market share component. This method implicitly assumes 

that acceleration, fuel economy, and price each affect market share independently, which 

may not be entirely accurate. However, I assumed that this simplification was suitable for 

the work at hand, though future studies may wish to investigate its validity.   

Finally, the delta market share of the modeled vehicle is added to the known 

market share of the reference vehicle and multiplied by the known market size to estimate 

the actual number of vehicles sold per year in the first year of production. (Equation 5) 

 

referencereferencetotalyear sizemarketsharemarketsharemarketsalesannual ×+Δ= )(1

 
Equation 5 
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These annual sales levels are used to compare different technology/price 

strategies in a relative sense just as Market Insight advises.  

 

2.2.3 Cost model 

After the expected annual sales level in year one is known, a production capacity 

decision (in terms of a percentage of this sales level) is made which determines plant size. 

The cost model then maps this production capacity decision to required capital 

investments. Later, the cost model also maps annual production volume levels to variable 

costs, following a determination of the distribution of annual demand in future years.  

These two functions circumscribe the requirements of the cost model in the spreadsheet 

tool, which are to: (1) provide capacity-dependent fixed costs and (2) provide volume-

dependent variable costs, for the range of technology and capacity decisions considered. 

Due to the limited requirements of the cost model, I constructed a simplified 

parametric model based largely on the results of more complicated Process-Based Cost 

Models (PBCM) of materials forming and assembly processes. The next section provides 

some background on the principles of PBCM, followed by details of the steps I used to 

construct the parametric cost model for each material class. The final part of this section 

presents the methods I employed to model the production cost of the engines and the 

remaining portions of the vehicle.  
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Process-Based Cost Modeling Background 

Essentially, a Process-Based Cost Model translates the physical description of a 

product to its final production cost using detailed knowledge of the relevant 

manufacturing processes and operating conditions. The first step in the PBCM approach 

utilizes a process model that incorporates engineering relationships between the part 

description and the materials processing technology to determine the necessary 

processing requirements, such as cycle time and engineering scrap rates. Next, an 

operations model combines the processing conditions with the desired production scale to 

determine plant resource requirements, such as total annual machine time and total raw 

materials use. Finally, a financial model applies factor prices and accounting principles to 

the set of resource requirements outputted from the operations model in order to 

determine the production cost.  

 The Materials Systems Laboratory at MIT has developed PBCMs for 

many fabrication and assembly processes, which I was able to utilize for this thesis 

research. (Field, Kirchain et al. 2007) 

 

 

Figure 12  Process-Based Cost Model approach 
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 The major elements of production cost can be organized by those that change with 

production volume (variable costs) and those are constant for any production volume 

(fixed costs). Typically, PBCM results categorize variable cost elements by material, 

labor, and energy; while fixed cost results are reported by equipment, tooling, building, 

overhead, and maintenance.  

 

From Process-Based Cost Models to Simplified Parametric Models 

 Although Process-Based Cost Models can provide many detailed insights 

pertaining to cost drivers, this thesis is concerned with the cost of different technologies 

only in terms of (1) total production cost, and (2) capital cost intensity. These high-level 

goals imply that a relatively low-resolution parametric relationship can be used as a 

surrogate for a complicated PBCM without sacrificing explanatory usefulness, so long as 

the parametric model captures the basic relationships between production capacity and 

fixed costs and between production volume and variable costs indicated by the PBCM.  

 I constructed such a simplified parametric model using several different methods, 

explained below. 

 

Material Systems Variable Costs 

 The variable cost components I considered for each material system are the cost 

of material, labor, and energy.  Material cost accounts for the costs of all materials that 

are needed to make one good part, factoring in trim scraps, rejected parts, and required 
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processing materials. Labor cost is the cost of direct workers; while energy cost includes 

all the energy required to form parts, join assemblies, and operate auxiliary machinery.  

 I modeled the total variable cost per unit as the sum of each variable cost 

component per unit (material, labor, energy), where the variable cost component per unit 

is the variable cost result from the respective Process-Based Cost Model. The total annual 

variable cost for all units’ production is then given by the total variable cost per unit 

multiplied by the annual production volume.      

 To determine the variable cost component results to be used as the basis of these 

relationships, I first needed to model the closures and bodies-in-white (the two materials-

specific applications being studied) in PBCMs of fabrication and assembly processes. In 

cases where the number of parts or assembly tasks was reasonably small, I explicitly 

modeled each part or task in a PBCM and then summed the cost components over all 

parts. The only production phase this method did not apply well for was the fabrication of 

the steel body-in-white, which has more than 200 parts. But for all other production 

activities (steel and composite closure set fabrication and assembly, composite body 

fabrication and assembly, steel body assembly), the variable cost components of the 

complete assembly—either the entire closure set or the entire body-in-white—are given 

by  

 

∑= taskactivity unit per cost materialunit per cost material  

Equation 6 

 
∑= taskactivity unit per cost laborunit per cost labor  

Equation 7 
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∑= taskactivity unit per costenergy unit per costenergy  

Equation 8 

 
where the subscripts are defined as:  

activity: closure fabrication, closure assembly, body fabrication (except steel body),         

     body assembly 

task: individual part fabrication or individual joining operation 

 

 I performed this method for fabrication and assembly phases using PBCMs of the 

appropriate processes developed by the Materials Systems Laboratory. (More information 

on the fabrication and assembly models can be found in Erica Fuchs’s master’s thesis (for 

steel stamping, SRIM fabrication, and steel and composite assembly) (Fuchs 2003), and 

Paul Kang’s master’s thesis (for SMC fabrication) (Kang 1998). The method for 

constructing the simplified parametric variable cost model for all activities except steel 

body fabrication is then given by: 

  

volume production annual unit per costcost variable annual total activityparametric ×= ∑  

Equation 9 

 

where cost per unitactivity is the material cost, labor cost, and energy cost per unit 

described above, for both the closure and body-in-white, in fabrication and assembly. 

Note that the equations presented in the current chapter are meant only to convey a 

generalized method for implementing a parametric cost model based on the results of 
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PBCMs. Specific cost figures for each material/design, for both fabrication and assembly 

phases, appear in the next chapter which presents details of the case study.  

 With respect to the steel body-in-white fabrication, I followed a cost modeling 

method presented by Erica Fuchs, which simplifies the task of modeling a multipart 

assembly by modeling groups of parts instead of each individual part. Fuchs’s method, 

when applied to a body-in-white fabricated by steel stamping, calls for grouping parts 

according to the equipment they are processed with and the complexity of the part. 

(Fuchs 2003) Both of these criteria scale the capital investment required in fabrication. 

The equipment grouping determines the size of the unit capital investment (larger and 

faster presses are more expensive than smaller and slower presses), and the complexity 

level determines how many hits on the press the part will need to be formed. This 

grouping rubric is key to ensuring that the fixed costs of fabricating all part groups 

correctly scale with production capacity. (The relationships between fixed cost and 

production capacity will be addressed further in the next section.) 

 Once the parts have been organized by equipment and complexity, the average 

part mass for each group (total mass/number of parts) is then calculated and this mass— 

together with the material, press specification, and complexity level, is treated as 

representative design parameters for the group. The fabrication cost of each “average” 

part is then determined using the steel stamping PBCM. Once the fabrication cost of the 

average part is known, the fabrication cost for the entire part group is given by the 

product of this average fabrication cost and the total number of parts in the group: 
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group in parts of numberunit per costunit per cost part averagegroup part ×=  

Equation 10 
 

The previous equation is evaluated for all variable cost components: material, labor, and 

energy cost per unit. The variable cost components of fabricating the entire steel body-in-

white is then given by 

∑= group partfabbody unit per cost materialunit per cost material  

Equation 11 
 

∑= group partfabbody unit per cost laborunit per cost labor  

Equation 12 
 

∑= group partfabbody unit per costenergy unit per costenergy  

Equation 13 
 
  

for all part groups that comprise the steel body-in-white. The parametric model of total 

annual variable costs is then calculated as before, using the cost component results for 

body fabrication:  

 

volume production annual unit per costcost variable annual total fabbody parametric ×= ∑  

Equation 14 
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Material Systems Fixed Costs  

 The fixed cost components I considered are the cost of equipment, tooling, 

building, overhead, and maintenance. Equipment includes all primary processing 

equipment and auxiliary equipment, building space includes the requisite plant space 

such equipment takes up, overhead accounts for the time that supervisors, managers, and 

other indirect laborers expend on the project, and maintenance is the cost of maintaining 

and repairing the processing equipment. Of these, the first three are capital investments 

(usually one time investments), while overhead and maintenance are expenses that 

typically scale in relation to the size of the capital investments. That is, overhead and 

maintenance costs grow as the investments in equipment, tooling, and building grow.  

 Capital investments scale with production capacity in different ways depending 

on the type of production process being modeled, so I followed different fixed cost 

modeling methods according to the following descriptions.  

 

Steel Stamping Fabrication Fixed Costs  

 The fixed cost of the tooling required to fabricate parts in steel stamping is 

modeled as a one time investment that does not change with production capacity because 

the tool is dedicated to the part (it is shape-specific and cannot be shared by other parts) 

and is durable enough to last millions of cycles, more than needed to produce vehicle 

components over a five year production life.  

 The fixed costs of equipment and building, however, generally scale linearly with 

production capacity because the same stamping equipment (and its building space) can be 

used to fabricate many parts, and parallel stamping lines can be brought on line as needed 
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to satisfy desired annual capacity.  As such, the allocated equipment and building 

investment of producing parts (the investment charged to the part of concern) is 

calculated by multiplying the one time capital investment by the fractional amount of 

time per year that parts fabrication entails. For example, if the production capacity is 

desired to accommodate a production volume of 200,000 parts per year and each part 

requires 0.5 minutes on the stamping line (slow for stamping, but used to illustrate the 

point), the process will require approximately 1,667 hours per year of stamping. If the 

maximum capacity of one stamping line is 1,500 hours per year, the fabrication process 

will be charged for 1,667/1,500 = 1.11 fractional units of the one time investments in 

equipment and building for an entire stamping line.   

 This fractional unit will increase as the time required for producing parts 

increases, which means that the allocated investments in equipment and building will 

increase at the rate that production capacity increases.  

 Therefore, to construct a parametric model, I first determined the allocated 

equipment and building investments for steel stamping fabrication at a production 

capacity of 100,000 APV using the steel stamping PBCM, and then multiplied this 

allocated investment by a capacity factor that represents how much larger or smaller the 

actual capacity is. For the steel closures each individual part was modeled in the PBCM, 

for the body-in-white, the part groups described previously were modeled.  

 At any capacity, the allocated building or equipment investment is thus given by 

 

)
000,100

( APVxinvestment allocatedinvestment allocated 100,000APV atparametric =  

Equation 15 
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where allocated investmentat 100,000APV is the PBCM result for either equipment or building 

space at a capacity of 100,000 units per year, APV is the actual capacity being modeled in 

the parametric model, and allocated investmentparametric   is the allocated investment value 

used by the parametric model at the appropriate capacity.  

 With the tool investment, allocated equipment investment, and allocated building 

investment determined, all capital investments are known. The remaining fixed costs of 

overhead and maintenance are then calculated as a percentage of the total capital 

investment (tool + allocated equipment + allocated building).  

 

Composite Fabrication Fixed Costs 

 The manner in which the capital investments required for composite fabrication 

scale with production capacity depends on the type of composite process being modeled. 

Sheet molding compound (SMC), as described earlier, is a sheet pressing process similar 

to steel stamping. Therefore, I judged that the capacity factor method for scaling the 

equipment and building investments involved in steel stamping fabrication outlined 

above is also appropriate to use as the method for scaling the equipment and building 

investments involved in SMC fabrication. Similarly, tool investments for SMC 

fabrication were modeled as one-time investments that are constant for any production 

volume, as was assumed for steel stamping. Overhead and maintenance were similarly 

calculated as a percentage of the total capital investment. 

 Structural reaction injection molding (SRIM), on the other hand, is a flow process 

quite different from sheet pressing processes. From a cost modeling perspective, the most 

important distinction is that SRIM tools have a much shorter useful life than steel 
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stamping tools or SMC tools. In modeling the SRIM tool investment, therefore, I 

determined the unit tool investment required to produce one complete assembly (such as 

the body-in-white), and then established a period at which additional unit tool 

investments must be made, based on the useful life of the tools, the reject rates for the 

individual process steps involved in SRIM fabrication, and the cycle time. (If cycle time 

slows such than a parallel line is required, another tool set must be purchased.) The 

general form of the parametric model for SRIM tool investments is then  

)roundup(
period treplacemen tool

APVinvestment tool unitinvesttool body SRIMparametric ×=  

Equation 16 
 
where unit tool investmentSRIM body is the tool investment required to produce one 

complete body, APV  is the actual annual capacity, and tool replacement period  is the 

number of units of annual capacity before another unit tool investment must be made. 

This period will be shorter than the period implied by the useful life because of the 

effects of rejects and cycle time. Note that all SRIM tool investments were modeled as a 

single up-front purchase to simplify the parametric cost model. In reality, a firm 

manufacturing with SRIM would choose to defer the investments in additional tools until 

it needed them.    

 The two remaining capital investments required for SRIM fabrication: equipment 

and building, were calculated using the capacity factor method presented for steel 

stamping because the SRIM process is modeled as a parallel fabrication process. Finally, 

overhead and maintenance are calculated as a percentage of the total capital investment, 

as before.  
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Steel Assembly Fixed Costs 

 Unlike the fabrication processes, which are modeled in PBCMs as parallel 

processes, assembly processes are modeled in series. As a consequence, capital costs will 

generally not scale with production capacity in the manner described previously. The 

difference occurs for two main reasons: (1) at capacities with low production volumes, 

many assembly stations will be unutilized because cycle times are so long, limiting cost 

savings, and (2) at capacities with high production volumes, the fixed transportation 

times between stations puts a limit on cycle time reductions, again raising the capital cost 

compared to what could be possible if one extrapolated a linear cost projection from a 

lower production volume. The end result is a capital investment versus production 

volume curve that is generally shaped like that shown in Figure 13. 

Capital Costs in Assembly PBCM
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Figure 13  Assembly PBCM model capital investments 
  

  The graph plots both the capital investment predicted by the assembly PBCM and 

a linear extrapolation using the investment value at 100,000 APV scaled by a straight-line 



 62 

capacity factor. The first effect noted—higher assembly investments at low production 

volumes compared to the linear capacity factor extrapolation—is evident but much less 

pronounced than the effect at high production volumes, where the investments predicted 

by the assembly model are 50% to 100% greater than the linear extrapolation.  

 Constructing the parametric steel assembly fixed cost model for the spreadsheet 

tool thus required a different reduction strategy than the capacity factor used for the 

parametric steel fabrication fixed cost model. Instead, I determined regression equations 

which approximate the capital investments that the process-based assembly cost models 

predict, as a function of production capacity. The form of these regression equations are 

cast study-specific, and so appear in the next chapter. 

 

Composite Assembly Fixed Costs  

   Composite assembly processes, for either SMC-type composites or SRIM type 

composites, are modeled in the same type of assembly model as is used for steel 

assembly, although the schedule of joining operations is different: steel assembly requires 

a variety of joining methods while composites are assumed to be joined by adhesive 

bonding only. Nevertheless, the manner in which capital investments required for 

composite assembly scale with capacity are controlled by the effects of serial processing, 

and therefore, the method for constructing a parametric model of composite assembly 

capital investments is the same as the method described above for steel (a regression of 

the results of the assembly PBCM).  
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Other Costs 

Engine 

 I assumed that engines would be shared by many different vehicle models across 

an automaker’s business, and so I considered them to be a marginal cost item for a new 

vehicle project. Without an available PBCM for engine manufacturing processes, I relied 

instead on a published regression of engine manufacturing cost as a function of maximum 

power (explained in detail in chapter three) to determine what this marginal cost should 

be.  

 

Paint and Rest of the Vehicle 

 In the absence of either a PBCM or published functional relationships for paint 

shop costs I simply estimated the values based on news reports of paint shop investments 

by automakers and input from industry experts.  

 To estimate the cost of the rest of the vehicle, I compiled the previously 

determined costs and then added additional investments and variable costs until the 

expected profit margin of the vehicle at the reference market size was approximately 6% 

for the small car, 9% for the mid-size car, and 21% for the luxury car. These profit 

margins were estimated on the advice of industry experts.     

 



 64 

2.2.4 Demand uncertainty model 

 After the cost model determines fixed costs as a function of production capacity, 

the future annual sales levels still need to be modeled in order to calculate operating costs 

and operating revenues over the life of the project. The demand uncertainty model, as 

identified in the modeling framework, accomplishes this by treating demand as a 

stochastic variable to project a probability distribution of future annual sales.  

 I chose to construct the demand uncertainty model by using a form of a binomial 

lattice, shown in Figure 14.  A binomial lattice is similar to a traditional decision tree 

except that in a binomial lattice there are only two possible moves from every 

observation and the tree branches recombine.1 That is, moving up in one period and down 

in the next arrives at the same observation as first moving down in one period and then 

up in the next. The probability of being at any observation is given by an associated value 

in a probability lattice (also shown in Figure 14), which recombines as well. The 

aggregate probability distribution of observations is then given by the dot product of the 

matrix of all observations in a given period and the probability matrix of those states.  

                                                 
1 A detailed discussion of binomial lattices and their application to financial options can be found in Cox, 
J., S. Ross, et al. (1979). "Option pricing: a simplified approach." Journal of Financial Economics..  



 65

 

Figure 14  Binomial lattice model approach 
 

 The primary benefit of using a recombining lattice as opposed to a non-

recombining tree is that the recombining lattice can significantly reduce the problem 

scale. For example, as the previous figure illustrates, the number of observations in any 

period n in a binomial lattice model is n+1. But if the lattice did not recombine, as in a 

traditional decision tree, the number of observations would grow at a rate of 2n (assuming 

that there are only two ways that the observation can evolve from period to period).   For 

n=5 these rates imply 6 states in a recombining binomial lattice and 32 states in a 

traditional tree, a sizeable difference. By n=10 the difference has become very large: 11 

states in a binomial lattice and 1,024 states in a non-recombining tree. So as the number 

of periods grows, the binomial lattice becomes a much more attractive research tool in 

analytic models relative to the traditional decision tree.  

 The downside of using the binomial lattice, however, is that it assumes path 

independence—that the observation being studied will behave the same way if 

observations go up-down as when observations go down-up—and that the system 
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remains unchanged. In the present problem, observations represent annual vehicle sales 

levels and the larger system includes an automaker’s production infrastructure.  

Therefore, implementing a binomial lattice in this work assumes the system does not 

adapt to observations—that a firm does not add or reduce capacity based on the sales 

level its sees in a given year. This isn’t perfectly true, as an automaker might install 

additional capacity after observing a period of high sales. However, I assumed that the 

errors introduced by this assumption are small relative to the computation benefit gained 

by using the recombining lattice, which makes it a suitable choice for this thesis.  

 

Contrast to Exponential Binomial Lattice Form 

As the previous figure illustrates, the observations in the binomial lattice I 

implemented evolve by moving up by a factor of (1+u) and down by a factor of (1 –u). 

This approach differs from the more common binomial lattice approach in which 

observations move up by u and down by 1/u. The more common approach, familiar to the 

financial options field, uses the [u, 1/u] observation evolution because the u-values can be 

derived from an exponential growth function. For example, given a random variable 

observation that is known to grow exponentially at rate r for time step t, and with 

standard deviation σ, the expected value at any time t is given by 

rt
t enobservationobservatio ×= 0]E[  

Equation 17 

  
And the corresponding u value for the representative binomial lattice is given by  
 

teu Δ= σ  

Equation 18 (Cox, Ross et al. 1979) 
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where ∆t is the time step of the binomial lattice.  

 The problem with using such a lattice form in this thesis is that it retains some 

growth even when r is 0.  Table 5 highlights this concern. On the left side of the table is a 

binomial lattice constructed using the modified form illustrated in Figure 14 with a 

starting value of 1.00, u = 0.162 and p = 0.5, modeling a random variable that has a 50% 

chance of increasing by 16.2% in each period and a 50% chance of decreasing by 16.2%. 

Over any number of periods the expected value of this variable in the lattice is still 1.00, 

so it does not exhibit any growth.   

The right side of the table presents a binomial lattice constructed from an 

exponential growth function with r = 0 and a standard deviation of 15%, which yields a u 

value of 1.162 by Equation 18. Again, this random variable is defined as having an equal 

likelihood of being up or down in the next period (p = 0.5), but this time the expected 

value increases over the lattice evolution which implies some growth, contrary to the r = 

0 rate from which the lattice is derived.  
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Modified  
Binomial Lattice 

Form 
 

[1+u, 1-u]  

  

Exponential  
Binomial Lattice 

Form 
 

[u, 1/u] 

 

 u = 0.162    r = 0 σ = 15% u = 1.162 

 p = 0.5    p = 0.5   
        

 Period 0 Period 1 Period 2  Period 0 Period 1 Period 2 
 Observations   Observations  
 1.00 1.16 1.35  1.00 1.16 1.35 
  0.84 0.97   0.86 1.00 
   0.70    0.74 
 Probabilities   Probabilities  
 100% 50% 25%  100% 50% 25% 
  50% 50%   50% 50% 
   25%    25% 
        
EV 1.00 1.00 1.00  1.00 1.01 1.02 

Table 5  Comparison of binomial lattice methods 
 
 I’ve chosen to use the modified form of the binomial lattice model in this work so 

that I can precisely characterize the growth (or no growth) of demand over time and be 

able to distinguish demand growth effects from demand uncertainty effects. However, 

this also means that I cannot specify the level of uncertainty (standard deviation) being 

modeled before hand, as is possible with the exponential form. Instead, the modified form 

requires picking a u value and then calculating an implied uncertainty in some future 

period by means of the resulting observation distribution.   

 

2.2.5 Regulatory model 

 
 With the vehicle performance attributes known and the distribution of vehicle 

sales now characterized by the demand uncertainty model, the regulatory policy model 
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can determine whether the firm’s expected sales activities comply with a stated policy. 

For the current work I’ve defined the regulatory policy model to mimic a simplified 

version of CAFE, the U.S. fuel economy policy outlined in Chapter One.  

The firm’s CAFE value in this simplified policy model is defined as a sales 

weighted average of the fleet fuel economy, 

 

Nvehicle

Nvehicle

Bvehicle

Bvehicle

Avehicle

Avehicle

mpg
sales

mpg
sales

mpg
sales

salesfirmtotalCAFEfirm

i

i L++
=  

Equation 19 

 

for N vehicles. If the firm does not meet the CAFE standard set by the policy then it pays 

a penalty given by  

penaltyCAFEsalesfirmtotal
mpg

CAFEfirmstandardCAFEpenaltyfirm ××
−

=
1.0

 

Equation 20 

where CAFE penalty is the cost per vehicle per 0.1 mpg of noncompliance.   

 As this policy model imposes penalty costs that scale in proportion to sales levels 

and fuel economy attributes without asymmetric effects, there is no need to employ a 

complicated modeling method such as the binomial lattice to investigate uncertainty in 

policies. Instead, policy uncertainty (such as uncertainty in CAFE standards and 

uncertainty in CAFE penalties) is modeled by testing different scenarios (CAFE at 

several values, CAFE penalties at several values) and comparing the results. 
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2.2.6 NPV Calculation 

Finally, all cash flows are accounted for in a net present value calculation, first to 

determine the NPV of each vehicle project and then for NPV of the entire fleet.  As Table 

6 shows, there are five main steps to the NPV calculation. First, the net revenue (revenue 

– cost) corresponding to each observation in the demand uncertainty lattice is multiplied 

by (1-tax rate) to determine the after tax cash flow for each observation. Next, the after 

tax cash flow lattice is multiplied by the probability lattice to calculate the expected after 

tax cash flow in each period. These expected cash flows are then discounted by some 

discount rate r and summed to give NPV.  

 Period 0 Period 1 Period 2… 
    

Step 1 (net revenue)*(1-tax) (net revenue)*(1-tax) (net revenue)*(1-tax) 
  (net revenue)*(1-tax) (net revenue)*(1-tax) 
   (net revenue)*(1-tax) 
    

Step 2 p(observation) p(observation) p(observation) 
  p(observation) p(observation) 
   p(observation) 
    

Step 3 [after tax CF] • 
[p(observation)] 

[after tax CF] • 
[p(observation)] 

[after tax CF] • 
[p(observation)] 

    
Step 4 E[after tax CF] E[after tax CF]/(1+r) E[after tax CF]/(1+r)2 

    
Step 5        NPV   =  sum(all discounted after tax CF) 
Table 6  NPV calculation for one vehicle 
 

 

The firm-wide NPV considering all vehicle projects is then given by 

penaltyfirmNNPVBNPVANPVNPVfirm −++= L  

Equation 21 

for vehicles A through N.  

 



 

Chapter 3: Case study 

 This chapter builds on the general modeling framework described in chapter two 

by defining a case study which investigates the previously stated research questions 

pertaining to the competitiveness of lightweight materials and engine technologies in 

automotive applications when demand and regulation policy are uncertain.  An overview 

of the case study is provided first, followed by a description of how each model was 

tailored to the case.  

3.1 Case Study Overview 

 In light of the thesis problem, I designed a general method to evaluate the NPV of 

vehicle fleet projects given a set of materials and engine technology decisions. While the 

method facilitates studying a host of materials and engine technologies, the goal of the 

case study is simply to demonstrate that the method is sound and can produce useful 

insights, thus the case study I designed has a more narrow scope. The materials options 

are thus limited to composites and mild steel, and the engine options are limited to a high 

power and low power version.  I chose to investigate composites over aluminum and 

other light metals like high strength steel because the low capital-intensity of parts 

production in composites typically presents the starkest contrast to the high investment, 

low variable cost structure that characterizes steel stamping—which may improve 

composite’s business case when demand is uncertain.  

 The engine options were limited to a low-powered gasoline engine or a more 

powerful gasoline engine. While other propulsion technologies such as diesels or hybrids 
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could have been investigated, having one set of engine technologies separate from the 

materials choices provides enough resolution to demonstrate the general method. 

Furthermore, although the case can be reduced to isolate the choice between composite 

and steel—without considering additional engine options—the wider case definition 

including different engines allows more nuanced analyses that consider technology 

strategies such as conventional materials paired with powerful engines and lightweight 

(composite) materials paired with less powerful engines.  

 The materials options are thus defined for the case as  

• Body-in-White: stamped mild steel or composite (based on SRIM/glass     

          fiber design) 

• Closure set: stamped mild steel or composite (based on a mixed     

                SMC/RIM design) 

And the engine options as 

• Engine: 95 kW or 155kW spark-ignition (gasoline) internal       

         combustion  

 The materials options were influenced by data availability. The closure set is 

based on an SMC/RIM (RIM stands for Reaction Injection Molding, which is equivalent 

to SRIM without reinforcement) design because SMC is currently being used in such 

applications and several industry experts were able to provide recommendations for the 

design parameters for a full SMC/RIM closure set. The composite body is based on an 

SRIM design because a previous MIT thesis investigated such a design in detail, 

including processing requirements and production costs (Fuchs 2003). Although other 

composite designs could have been chosen, these case study results should be broadly 
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applicable to a class of automotive composites which has a similar production cost 

structure (high variable cost, low fixed cost).    

 The two engine options represent typical small (95 kW/127 hp) and mid-sized 

(155 kW/208 hp) gasoline engines that are equipped in passenger cars sold in the U.S.  

 A production capacity decision was also defined in the case study, 

• Production capacity: 110% or 125% of expected year one sales 

 The production capacity decision introduces options for building a plant with an 

annual production capacity either 10% or 25% larger than the expected first year of sales. 

The choice between building in 10% extra capacity and 25% extra capacity will depend 

on the firm’s technology-influenced cost structure, the profit margins on each vehicle, 

and the nature of demand uncertainty. 

 Each of these decisions: body material, closure material, engine, and production 

capacity was applied to three new vehicle projects, a small car, medium car, and luxury 

car.  Table 7 provides an overview of the technology choices and associated system 

masses for each car. Note that the body-in-white and closure designs were developed for 

the mid-size car and then the masses were scaled by 85% to model a small car and 121% 

to model a luxury car, based on the relative curb weights of a representative small car, 

mid-size car, and luxury car. Furthermore, the mass which represents the rest of the 

vehicle was chosen such that the all steel, 95 kW engine small car mass approximates the 

mass of the small car (1275 kg), the all steel, 95 kW engine mid-size car approximates 

the mass of the mid-size car (1502 kg), and the all steel, 155 kW engine luxury car 

approximates the mass of the luxury car (1815 kg). These full vehicle combinations are 

denoted by bolded mass entries in the table.     
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 material Small Car Mid-Size Car Luxury Car 
  mass (kg) mass (kg) mass (kg) 
Body-in-White     

Steel stamped mild steel 220.5 259.4 313.9 
Composite SRIM, glass reinf. 142.2 167.3 202.5 

     
Closure set     

Steel stamped mild steel 106.1 124.8 151.0 
Composite SMC/RIM 67.4 79.3 96.0 

     
Engine     

95 kW Engine n/a 123.0 123.0 123.0 
155 kW Engine n/a 160.0 160.0 160.0 

     
Rest of Vehicle n/a 824.8 995.0 1190.1 
     
Full Vehicle Combinations    

All Steel, 95 kW Engine 1274.4 1502.2 1778.0 
All Steel, 155 kW Engine 1311.4 1539.2 1815.0 

All Composite, 95 kW engine 1157.4 1364.6 1611.5 
All Composite, 155 kW Engine 1194.4 1401.6 1648.5 

Table 7  Case study vehicle options overview 
 
 As the table indicates, the composite body-in-white saves 35% mass compared to 

the steel design, while the composite closure set saves 36% compared to the steel version. 

These mass savings are aggressive, but both designs were devised with significant input 

from industry experts, as noted in the work of Erica Fuchs for the body (Fuchs 2003; 

Fuchs, Field et al. 2008), or directly by the current thesis for the closure set. Furthermore, 

note that the full-vehicle combinations with masses in bold are not fully equivalent to the 

reference vehicles because the engines are not the same as the engines in the reference 

cars. This implies that although the all steel-95 kW small car weighs the same as the 

reference small car, the fuel economy and acceleration of the all steel-95 kW modeled car 

will be different than the actual fuel economy and acceleration of the reference car 
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because the modeled engine has a different power rating than the engine equipped in the 

vehicle used to model the reference.  

 Additionally, note that each vehicle is assumed to compete in a different market 

segment, and sales increases for each vehicle are assumed to occur without cannibalizing 

the rest of the fleet.   Prices were set at typical levels for each vehicle and held constant 

across all analyses to isolate the effects of technology choice on production cost and firm 

value.    

 As there are 16 different technology/production capacity combinations per vehicle 

(2 body x 2 closure x 2 engine x 2 capacity = 16 combinations) and three vehicles in the 

firm’s fleet, the total number of possible fleet options for the firm is 163 = 4,096.  

 The remaining sections of this chapter describe how each of the models in the 

spreadsheet tool was calibrated to the case study.   

 

3.2 Model Calibration   

3.2.1 Performance Model 

 As described earlier, the performance model maps technology choice to vehicle 

fuel economy and acceleration. I accomplished this by first recording the results of 

ADVISOR test simulations (for fuel economy and acceleration) while varying total 

vehicle mass and final drive ratio; and then regressing the performance test results against 

mass and final drive ratio to establish vehicle performance curves for each engine choice 

over a range of transmission tuning options and vehicle masses. These performance 

curves are not an attempt to model any specific vehicle combinations in the fleet, such as 
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the four full vehicle combinations presented in Table 7. Rather, they are generic 

relationships between engine power, vehicle mass, and transmission tuning which are 

applied to each car (small, mid-size, and luxury) in the fleet given any set of technology 

decisions for that car. Therefore, it was important to ensure that the range of ADVISOR 

test scenarios encompassed the possible range of engine power (95 kW and 155 kW) and 

the possible range of vehicle masses for all cars in the fleet (approximately 1200 kg to 

1800 kg), but not necessarily the specific engine-mass combinations presented earlier.  

 All ADVISOR simulations were performed with the small car default model that 

is natively programmed in the software, using all default settings except those that were 

varied for this analysis: max engine horsepower, total vehicle mass, and final drive ratio. 

The two tests run in ADVISOR were the 0-60 mph acceleration test and the EPA Federal 

Test Procedure (FTP) test, which simulates the city driving cycle. Although a weighted 

average of the city fuel economy test and highway fuel economy test is actually used by 

regulators to determine CAFE compliance, city test results are affected by weight and 

engine power changes much the same way the highway test results are (and thus the same 

way that the weighted average results are). Therefore, using the city test results in this 

thesis as a proxy for the weighted average test results calculated for on-road vehicles 

imposes a more stringent fuel economy test in some sense but nevertheless captures the 

relationship between technology choice and fuel economy that is required for a 

meaningful analysis. 

 Figure 15 and Figure 16 graph the ADVISOR acceleration and fuel economy test 

results for the 95 kW and 155 kW engine, over a range of total vehicle mass from 1200 to 
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1800 kg and final drive ratios from 0.4 to 2.0. (The default final drive ratio in ADVISOR 

is 1.0.) 
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Figure 15  Fuel economy and acceleration surface for 95 kW engine 
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Figure 16  Fuel economy and acceleration surface for 155 kW engine 
 



 As the previous fuel economy and acceleration surface plots show, decreasing 

mass improves both parameters (lower 0-60 times correspond to improved acceleration). 

On the other hand, increasing the final drive ratio improves acceleration but lowers fuel 

economy. These two basic trends are the most relevant information to gather from the 

surface plots themselves. However, Figure 17 and Figure 18 translate this data to a single 

graph (for the 95 kW and 155 kW engine, respectively) to plot the more interesting 

tradeoff between fuel economy and acceleration at each tested vehicle mass. Each data 

point on the mass curves in Figure 17 and Figure 18 correspond to a different final drive 

ratio: 0.6, 0.8, and 1.2. 

 Only three points are plotted on each curve because they approximate the bounds 

of the efficient engine-tuning frontier for the given mass. As the plots show, tuning the 

final drive ratio higher than 1.2 will yield lower fuel economy and no more acceleration 

gains, while final drive ratios less than 0.6 will result in worse acceleration without fuel 

economy improvements. The useful tuning ratios, and thus the useful fuel economy-

acceleration relationships, are found between these endpoints.  

 Note that the maximum convexity of each performance curve occurs close to a 

final drive ratio of 0.8 to 1.0 (the middle data point marker). This region of the curve 

balances fuel economy and acceleration best: shifts along the curve away from this region 

either dramatically reduce acceleration (to lower final drive ratios) or dramatically 

reduces fuel economy (to higher final drive ratios). But this doesn’t imply that this region 

of the fuel economy-acceleration tradeoff curve is optimal for each car. If one 

performance measure is valued much more highly than the other, it may be best for the 

automaker to tune to either extreme, instead of the balancing middle.   
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Figure 17  Fuel economy vs. acceleration for 95 kW engine 
 
 

Fuel Economy vs. Acceleration
155 kW engine: ADVISOR simulations

6

7

8

9

10

19 20 21 22 23 24 25

mpg

0-
60

 m
ph

 (s
ec

)

1200 kg
1266 kg
1333 kg
1400 kg
1466 kg
1533 kg
1600 kg
1666 kg
1733 kg
1800 kg

 

Figure 18  Fuel economy vs. acceleration for 155kW engine 
  

 The data sets which underlie the previous two graphs were then regressed using a 

log-log equation form to arrive at a pair of equations for each engine that predict fuel 

economy and acceleration as a function of vehicle mass and final drive ratio. The 

(fd =  1.2) 

(fd =  0.6) 

(fd =  1.2) 

(fd =  0.6)
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coefficients of these regressions are presented in Table 8 and, taken together, these four 

regression equations represent the implemented performance model used in the presnt 

thesis analysis.   

ln variable = intercept+β1*(ln total vehicle mass)+ β2*(ln final drive ratio) 
 intercept β1 β2 adj. R2 

95 kW engine     

ln mpg 6.1487 
(0.0961) 

-0.3824 
(0.0132) 

-0.0785 
(0.0060) 0.97 

ln 0-60 (sec) -4.1315 
(0.4050) 

0.8870 
(0.0554) 

-0.3514 
(0.0251) 0.94 

     
155 kW engine     

ln mpg 5.1675 
(0.0905) 

-0.2855 
(0.0124) 

-0.1286 
(0.0056) 0.97 

ln 0-60 (sec) -2.7094 
(0.6392) 

0.6392 
(0.0607) 

-0.2220 
(0.0275) 0.86 

Table 8  Performance model regression coefficients. (standard error) 
 
 In general, the regression statistics show a reasonably good fit to the data. The 

standard errors on all coefficients are small and the adjusted R2 values are high (except 

for the 155 kW acceleration regression). To compare the results of these regression 

equations to the commonly used 10-5 rule (a 10% reduction in vehicle mass yields a 5% 

improvement in fuel economy), I held final drive ratio constant at 1.0 (the baseline value 

in ADVISOR), varied vehicle mass, and plotted the fuel economy and acceleration results 

as a percent change of an initial value.  Figure 19 and Figure 20 present these results for 

the 95 kW engine.  

 As the figures show, the fuel economy-mass relationship predicted by the 

ADVISOR performance model regression is very close to the 10-5 rule of thumb, while 

the acceleration-mass relationship predicted by the ADVISOR regression is closer to a 

10-10 rule: a 10% mass reduction leads to a 10% reduction in 0-60 time. This 10-10 
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relationship was also found by Catarina Bjelkengren doing related research in a 

contemporaneous MIT thesis. (Bjelkengren 2008) Although Bjelkengren’s acceleration-

mass relationship is the result of a proprietary performance model from a major 

automaker, the outcome is essentially the same.  

 The mass-performance relationships of the case study performance model are thus 

verified by a commonplace engineering rule of thumb (for fuel economy), and a 

colleague’s independent research results (for acceleration).  
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Figure 19  Fuel economy-mass relationship 
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Acceleration - Mass Relationship
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Figure 20  Acceleration-mass relationship 

 

3.2.2 Market Share Model  

 The market share model, as described in chapter two, translates fuel economy and 

acceleration values to an expected market share in the first year of full production. The 

market share model works by measuring the difference between the fuel economy and 

acceleration of the modeled vehicle and the fuel economy and acceleration of a similar 

reference vehicle for which a market share is known.  Given a relationship between the 

change in each performance measure and the change in market share for the reference 

vehicle, a total change in market share can be calculated for the modeled vehicle and then 

added (or subtracted) from the reference market share to determine the market share for 

the modeled vehicle. (Price is held constant in the case study at the reference value, so the 

change in market share due to a change in price is zero).  

 Table 9 presents the fuel economy, acceleration, price, and market share of each 

reference vehicle used in the case study market model. These values are based on 
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numbers for actual vehicles gathered from the My Product Advisor database operated by 

Market Insight and reported by Bjelkengren. (Bjelkengren 2008) As mentioned earlier, 

Market Insight provides market share data for vehicles but not overall market size. 

Therefore, to determine the implied market size that the Market Insight market share 

numbers suggest, I compared the market share number to the known sales of these 

vehicles in 2006 and calculated the corresponding approximate market size. These 

implied market size approximations appear at the far right of the table.   

 The implied market sizes are simply a way of scaling the Market Insight market 

share numbers to actual sales levels. The fact that the implied market size numbers are 

the same or similar for each car does not mean that the cars compete in the same market; 

rather, a basic assumption of this model is that each vehicle competes in a separate 

market segment and cannot cannibalize sales from the other two vehicles.  

 Fuel 
Economy 

(mpg) 

Acceleration
0-60 time 

 (sec) 

Price Market 
Share 

Actual 
2006 Sales 

Implied 
Market Size

(approx.) 
 Market Insight data  
Small car 24.6 9.6 $15,992 0.514% 211,449 40m 
       
Mid-size car 22.2 8.1 $20,769 0.534% 157,644 30m 
       
Luxury car 18.7 7.0 $50,795 0.066% 25,676 40m 
       
Table 9  Reference vehicles for market model 
 
 The market for each of these vehicles responds differently to variations in product 

attributes. To understand how the demand for these vehicles is affected by fuel economy 

and acceleration performance, Bjelkengren studied how the reported market share 

changed as the reference fuel economy and acceleration of each vehicle varied. The 

outcome of her work appears in Figure 21 and Figure 22, which plot the change in market 

share due to a change in fuel economy and acceleration, respectively, for each vehicle. As 
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the graphs show, a one mpg increase in fuel economy results in the largest market share 

gain for the mid-size car, followed by the small car and then the luxury car. With respect 

to acceleration, the small car market share is most responsive to a one second 0-60 

improvement, followed by the mid-size car market and then the luxury car market. 

(Bjelkengren 2008) 
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Figure 21  Fuel economy - market share model 
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Figure 22  Acceleration - market share model 
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 Bjelkengren then found regression equations which describe each market share – 

performance relationship. These equations appear below.   

 

Small Car 

275 )(1081.1)(1085.7 mpgmpgsharemarket mpg Δ×+Δ×=Δ −−  

Equation 22 

 
36244 )(1086.9)(1014.1)(1046.4 60Δ060Δ060Δ0sharemarket 600 −×+−×−−×=Δ −−−

−

 
Equation 23 

 

Mid-size car 

264 )(1042.4)(1039.1 mpgmpgsharemarket mpg Δ×−Δ×=Δ −−  

Equation 24 

 

35244 )(1032.2)(1061.1)(1077.3 60Δ060Δ060Δ0sharemarket 600 −×+−×−−×=Δ −−−
−

 
Equation 25 

 

Luxury Car 

265 )(1010.1)(1031.3 mpgmpgsharemarket mpg Δ×−Δ×=Δ −−  

Equation 26 

 

36255 )(1016.3)(1052.1)(1095.4 60Δ060Δ060Δ0sharemarket 600 −×+−×−−×=Δ −−−
−

 
Equation 27 
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Where ∆mpg = (model vehicle mpg - reference mpg) and ∆0-60 = (reference 0-60 – 

model vehicle 0-60). The difference in sign accounts for the fact that improvements in 

fuel economy are positive, while improvements in 0-60 time are negative.  

 Once the market share changes due to fuel economy and acceleration are 

determined for each vehicle, they are summed according to the method outlined in 

Chapter Two to find the total market share change due to changes in performance (from 

the reference case).  The expected annual sales in the first year of production is then 

given by  

sizemarketimpliedsharemarketsharemarketsalesannual referencetotalyear ×+Δ= )(1  

Equation 28 

 

3.2.3 Cost Model  
 

 With the expected annual sales level in year one now determined for each vehicle, 

the production capacity decision (either 110% or 125% of this value) scales the size of 

the required production plant. The cost model then maps the technology decision (steel or 

composites for the body and closures)2 and plant scale to determine the required capital 

investments for each phase of production. The cost model must also be capable of 

calculating operating costs as a function of production volume (the number of cars 

actually produced in a given year, distinct from capacity), so this section will describe 

both fixed and variable cost calculations for each production process previously outlined. 

The section begins with a general overview of the cost modeling strategy for the case 

                                                 
2 Recall that engine costs are treated as marginal cost items so they do not vary with production scale. 
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study, followed by case-specific cost details for the closures, the body-in-white, the 

engines, paint, and the rest of the vehicle. 

 

Case study cost modeling strategy 

 As Chapter Two outlined, the parametric cost models constructed for the 

spreadsheet optimization tool in this thesis are derived (where possible) from the results 

of detailed process-based cost models of the underlying manufacturing methods. In the 

case of the steel stamped closure set, for example, all of the component parts are first 

modeled in a steel stamping PBCM and then the aggregate cost elements (allocated 

investment per unit of capacity and variable costs per unit produced) are used as the basis 

of a parametric cost model which can calculate annual fixed costs for a given capacity 

and variable costs for a given annual production volume. This transformation drastically 

simplifies the calculations that are performed while the spreadsheet tool simulates 

through all vehicle technology/capacity combinations to evaluate the total project cost of 

each option. Given that the solution method is computationally intense, this 

simplification improves solving time and increases the number of combinations that can 

be studied.  

 In performing the underlying PBCM cost studies, I made a further simplification 

by assuming that each car shares the same general closure set and body-in-white designs, 

which only vary by size. Therefore, instead of performing in-depth cost studies of each 

vehicle, I completed one detailed cost analysis for the mid-size car (in both steel and 

composites) and then scaled the cost results to approximate the costs of producing 

equivalent parts for the small car and the luxury car.  (Although I assumed that engine 
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costs and paint cost were constant across the vehicle fleet.) These costs were scaled using 

an engineering rule of thumb which holds that production costs for similar parts vary by 

the ratio of mass to the 0.6 power,  

6.0)(
carsizemid

carsmall
carsize-midcarsmall mass

mass
costcost

−

×=  

Equation 29 

6.0)(
carsizemid

carluxury
carsize-midcarluxury mass

mass
costcost

−

×=  

Equation 30 
For 

cost terms: material variable cost, labor variable cost, energy variable cost, tool 

 investment, allocation equipment investment, allocated building investment 

masssmall car = 1274.4 kg  

massmid-size car = 1502.2 kg  

massluxury car = 1815.0 kg  

 

 The following sections present the details of the cost modeling analysis for the 

mid-size car.  

 

Case study closures cost 

Closures designs 

 Estimating the production cost for closure sets manufactured from both of the 

materials technologies being studied first required determining some general design 

parameters, such as part geometries, raw material inputs, and manufacturing processes to 

be used. In formulating these specifications for the steel and composite closure designs, I 
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consulted several automotive industry experts with materials research, product design, 

and manufacturing/processing experience.  

 Table 10 presents the details of the two closure set designs, identifying the 

individual closures that were modeled. The closure sets consists of a hood, two front 

doors, two rear doors, two fenders, two quarterpanels, 3 and a decklid. For cost modeling 

purposes, only the hood, a generic door, a fender, and the decklid were explicitly 

modeled. All doors were assumed to be approximately of the same design, and the 

quarterpanel was assumed to be equivalent to the fender for mass and cost purposes. 

While all steel parts are stamped from mild steel, the composite closure set design 

consists of steel reinforced closures such as the door and un-reinforced RIM fenders and 

quarterpanels.  

Closure Modeled  
Subassembly Steel Composite Composite 

Structure 
  mass (kg) mass (kg)  
Hood hood 14.41 12.53 SMC/steel reinf. 
Front R door door 19.36 13.77 SMC/steel reinf. 
Front L door door 19.36 13.77 SMC/steel reinf. 
Rear R door door 19.36 13.77 SMC/steel reinf. 
Rear L door door 19.36 13.77 SMC/steel reinf. 
R fender fender 5.19 1.45 RIM 
L fender fender 5.19 1.45 RIM 
Decklid decklid 12.20 5.89 SMC/steel reinf. 
R quarterpanel fender 5.19 1.45 RIM 
L quarterpanel fender 5.19 1.45 RIM 
Entire Closure Set  124.80 79.30  
Table 10  Closure set designs by individual closure 
 
 All parts in the steel design are joined by spot welding and hemming, while the 

composite closure set is assembled by adhesive bonding only. Table 11 provides an 

overview of the designs, assembly methods, raw material costs, and masses.  

 

                                                 
3 Quarterpanels are usually considered part of the body-in-white, though they have been included in the 
closure set in this analysis.  



 92 

 Steel Closure Set Composite Closure Set 
Primary material mild steel sheet molding compound 
     Manufacturing process steel stamping SMC/RIM 
     Raw material cost $1.00/kg $2.40/kg  /  $2.65/kg 
Reinforcement material n/a mild steel 
Assembly method spot welding adhesive bonding 
Total mass (kg) 124.8 79.3 

Table 11  Closure set design overview 
 

Closure fabrication costs 

 To determine fabrication costs for the closures, I modeled all of the constituent 

parts in a process-based cost model of the steel stamping process and SMC process that 

were previously developed at the Materials Systems Laboratory according to the 

principles outlined in Chapter Two. More information on these process-based cost 

models can be found in Erica Fuchs’s MIT master’s thesis {Fuchs, 2003 #43} (for steel 

stamping and RIM) and Paul Kang’s MIT master’s thesis (for SMC). (Kang 1998) 

 Table 12  presents the process-based cost model results for the fabrication of the 

entire steel and composite closure sets, broken down by fixed costs and capital 

investments. This table is a list of PBCM results, but as discussed earlier, these cost 

component results comprise the foundation of the parametric cost model that the 

spreadsheet optimization tool utilizes to analyze each vehicle fleet/technology option.  
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fabrication costs
Steel Closure  

Set Fabrication 
Composite Closure 

Set Fabrication 
variable costs   
material $215.25 $276.01 
labor $9.43 $24.36 
energy $2.99 $10.09 
   
capital investments (fixed costs)   
allocated equipment investment at 100,000 APV $16,700,000 $9,700,000 
allocated building investment at 100,000 APV $1,700,000 $4,200,000 
tool investment $24,900,000 $10,900,000* 
 
*at 100,000 APV, varies by capacity factor   

Table 12  Closure set parametric fabrication cost model  
  

 The top three entries in the table are the variable cost components that fabricating 

each closure set entails. The next two entries refer to the allocated investments in 

equipment and building space required to produce closures at a capacity of 100,000 units 

per year (or annual production volume, APV). These values are sensitive to production 

capacity because more plant resources (specifically, more equipment time) are devoted to 

closures as production capacity increases.  

 Recall that the use of the term “allocated” implies that these figures do not 

represent absolute investments, but rather the fraction of a machine or building 

investment that is devoted to the production of closures for this vehicle project.  At 

production capacities other than 100,000 APV, the allocated investments are determined 

by multiplying the values in the table by a capacity factor as in Equation 15. 

 Furthermore, these one time investments (in machines or building space) are then 

annualized over the useful life of the item using a discount rate to account for the time 

value of money and the opportunity cost of investing capital in this project. The annual 

fixed cost will solve the equation 
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Equation 31 

where r is the discount rate and life is the useful life of the capital item in years. In this 

thesis I assumed a 12% discount rate, a machine/equipment life of 10 years, and building 

life of 30 years. 

 The last entry in the table presents the total tool investment. Unlike the building 

and equipment investments, this investment is an absolute figure because tools are part-

specific, so their useful production is dedicated to the part for which they were designed. 

Recall that the tool investment required for steel fabrication is assumed to be constant for 

any production capacity considered because steel tools are very durable (lasting millions 

of cycles) and are assumed to last the life of the project, while the some of the composite 

tools (for RIM closures) are less durable and must be replaced as production increases. 

 The combined SMC/RIM closure set design thus complicated the construction of 

a parametric model because the tooling costs of SMC fabrication and RIM fabrication 

vary with production capacity in different ways. As discussed earlier, SMC tool 

investments are assumed to be constant for any production volume (like steel stamping), 

but RIM tool investments must be made on a recurring schedule determined by a 

production volume period which is a function of tool life, reject rates, and cycle time. 

(This argument was actually made for SRIM, but the result holds for RIM as well.)  

Therefore, to model the capital cost behavior of the combined SMC/RIM closure set 

fabrication process, I analyzed the capital cost behavior of the mixed closure set predicted 

by the SRIM and RIM PBCMs across a range of production volumes and then 

determined the dominant trend. Based on the results of this examination, I determined 
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that the composite closure set tool investment can be modeled in the parametric 

relationship as an investment that varies by the capacity factor method, which is indicated 

in the table.  

 Tool investments are annualized by Equation 31 as well, using a 12% discount 

rate and a product life of 5 years. 

 Recall that overhead and maintenance are each assumed to be a certain percentage 

of the total allocated capital investment (allocated equipment + allocated building + tool). 

For this analysis, I assumed that overhead is 35% of total capital investment and 

maintenance is 15% of total capital investment.    

 Figure 23 presents the total cost results for closure fabrication, using the cost 

elements presented above and adding overhead and maintenance fixed costs. The graph 

plots average cost as a function of production capacity, assuming that the plant is fully 

utilized, producing vehicles at 100% capacity for every capacity plotted.  
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Figure 23  Closure set fabrication cost 
 
 As the graph shows, the modeled composite fabrication costs per closure set are 

constant at about $380 because the simplifying assumptions have treated all cost elements 

as capacity scaling (when fully utilized). This simplification ignores some small 
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economies of scale that SMC and RIM fabrication undergo, but it should not significantly 

affect the results in this thesis. Steel, on the other hand, exhibits significant cost 

economies as production scale increases, due to the tool investment that can be spread 

over more units.  The curves intersect at approximately 75,000 APV, above which steel 

fabrication is less expensive.  

 

Closure assembly costs 

 The required assembly operations for the mid-size car steel and composite closure 

sets were modeled in a process-based assembly cost model that considers a range of 

joining methods including welding, mechanical fastening, and adhesive bonding 

operations. While the steel subassemblies were modeled as being joined by a 

combination of methods, the composite closures were assumed to be joined by adhesive 

bonding only.   

 Recall that the capital investments required for a series assembly process vary 

nonlinearly with capacity. As a consequence, I constructed regression equations which 

approximate the capital investments predicted by the assembly PBCM as a function of 

production volume (assuming fully utilized capacity). To generate the regression 

equations I modeled the steel and composite closure set assembly processes, recorded the 

required capital investments in tooling, equipment, and building space over a range of 

production volumes, and then regressed the predicted investments against production 

volume.   These equations appear below, along with their associated R2 values.  
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Regression equations that approximate closure assembly PBCM capital investments: 

• Allocated equipment investment 

95.0)(0002.0)(2.22000,000,8 22 =+−= RAPVAPVinvestequip assemblyclosuresteel  

Equation 32 

 

97.0)(0002.0)(4.13000,000,6 22 =+−= RAPVAPVinvestequip assemblyclosurecomposite  

Equation 33 

 

• Allocated building investment 

93.0)(0002.0)(9.24000,000,10 22 =+−= RAPVAPVinvestbld assemblyclosuresteel  

Equation 34 

 
95.0)(0001.0)(7.14000,000,5 22 =+−= RAPVAPVinvestbld assemblyclosurecomposite  

Equation 35 

 

• Tool investment 

97.0)(00007.0)(2.10000,000,10 22 =+−= RAPVAPVinvesttool assemblyclosuresteel  

Equation 36 

 
94.0)(0001.0)(0.12000,000,5 22 =+−= RAPVAPVinvesttool assemblyclosurecomposite  

Equation 37 

 

where APV is the annual production volume capacity of the plant and all investments are 

in dollars.  

 To roughly compare these equations (and the underlying assembly processes), I 

have evaluated each equation at APV = 100,000 in Table 13, in addition to listing the 
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variable cost components for each design. (I grouped material, labor, and energy together 

in one variable cost term for the assembly phase for simplicity.) Comparing Table 13 to 

Table 12 shows that the investment savings from producing in composites as opposed to 

steel are smaller in the assembly phase of production than they are in the fabrication 

phase.  

assembly costs
steel closure  
set assembly 

composite closure 
set assembly 

   
variable costs $14.00 $105.00 
   
capital investments (fixed costs)   
allocated equipment investment at 100,000 APV $7,800,000 $6,700,000 
allocated building investment at 100,000 APV $9,500,000 $4,500,000 
tool investment at 100,000 APV $9,700,000 $4,800,000 
 
   

Table 13  Closure set parametric assembly cost model evaluated at 100,000 APV 
 

 Capital cost annualization and overhead/maintenance additions are carried out for 

assembly in the same manner as described above for fabrication. Figure 24 plots the 

resulting average cost curves. The composite cost curve still intersects the steel cost 

curve, but this time the crossover point is much lower, at approximately 40,000 APV 

(compared to the 75,000 APV observed in the fabrication cost curve comparison). This 

shift is due to the greater discrepancy in variable costs and higher capital investments 

required by composite assembly relative to steel assembly.  
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Figure 24  Closure set assembly cost 
 

Closure set production cost 

 Figure 25 combines the fabrication and assembly costs, plotting average 

production cost for the mid-size car steel and composite closure designs modeled in this 

thesis. The crossover point is approximately 64,000 closure sets (or vehicles) per year, 

after which steel closure production is always less expensive. At high production 

volumes (more than 200,000 units per year), steel has a cost advantage of approximately 

$150 per closure set.  
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Figure 25  Closure set production cost 
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Body-in-white 

Body-in-white designs 

 As described in the previous section on closure production costs, the first step in 

performing a production cost analysis requires determining the product design 

parameters. For the steel and composite bodies-in-white I used designs researched and 

published by Erica Fuchs. (Fuchs 2003; Fuchs, Field et al. 2008) However, this thesis 

studies cost issues at a broader level than Fuchs’s work, so her detailed designs have been 

used as a guide that in some instances were slightly modified to reduce the cost modeling 

complexity without sacrificing essential information. This section describes those 

modifications and the resulting production costs.   

 Table 14  outlines the body-in-white designs. Although Fuch’s steel body design 

used several different types of mild steels, all with yield strength below 210 MPa, I 

modeled the entire body from the same 140 MPa alloy. This simplification minimally 

changes cost results because the material properties (and thus the raw material cost and 

required forming forces) are so similar. The table also identifies the material system 

Fuchs used in her composite body design, an SRIM polyurethane reinforced with glass 

fiber.   

 The entire steel body is comprised of 111 components and 101 inserts that are 

joined by spot welding, while the composite body, by contrast, has only 25 parts and is 

joined by adhesive bonding. The composite body weighs 167.3 kg, a mass savings of 92 

kg, or 35%, compared to the 259.4 kg steel body.  
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 Steel 
 Body-in-White 

Composite  
Body-in-White 

Primary material mild steel sheet SRIM 
     Manufacturing process steel stamping SRIM 
     Raw material cost $1.00/kg $2.65/kg 
Reinforcement material N/A glass fiber 
     Reinforcement material cost N/A $2.50/kg 
Assembly method spot welding adhesive bonding 
Number of parts 212 25 
Total mass (kg) 259.4 167.3 

Table 14  Body-in-white designs overviews 
  

Body fabrication costs 

 While Fuchs presented total production cost values in her published work, she did 

not break out the variable cost and capital cost elements in a manner that easily translates 

to the parametric cost model needs of this thesis. Therefore, I modeled Fuchs’s body 

designs in PBCMs in order to replicate her results and observe the needed cost 

components. In the case of the 25-component composite model, I directly modeled all 

parts in an SRIM PBCM, but for the 200+ part steel body I simplified the fabrication cost 

modeling task by following Fuchs’s method of organizing parts into groups based on part 

complexity and processing equipment type, as outlined in Chapter Two.  

 The steel body part groups were organized according to the type of equipment 

each was assumed to be manufactured on: a progressive, tandem, or transfer press, and by 

the complexity of the part, which was assigned a complexity level of 1, 2, or 3. Both of 

these criteria scale the capital investment required in fabrication. The equipment grouping 

determines the size of the unit capital investment (progressive presses are the least 

expensive, followed by the investments for tandem and then transfer presses), and the 

complexity level determines how many hits the part will need to be formed. Parts with a 

complexity level of 1 need fewer hits than parts with complexity level 2, which need 
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fewer hits than parts with complexity level 3. Table 15 provides an overview of all the 

part groups for the steel body. 

Part Group [complexity] Total Mass (kg) Number of Parts 
   
Progressive [1] inserts 10.6 94 
Transfer [1] inserts 7.2 7 
   
Progressive [1] 0.4 2 
Progressive [2] 3.2 3 
Progressive [3] 24.3 2 
Tandem [1] 14.2 19 
Tandem [2] 34.5 37 
Tandem [3] 33.4 12 
Transfer [1] 6.4 7 
Transfer [2] 26.4 9 
Transfer [3] 98.8 20 
   
entire steel body-in-white 259.4 212 

Table 15  Steel body-in-white part grouping 
 

 The average part mass for each group (total mass/number of parts) was then 

calculated and this mass, together with the material, press specification, and complexity 

level, were treated as representative design parameters for the group. The production cost 

of each “average” part was then determined using the same steel stamping PBCM as was 

used for steel closures.  

 Once the cost of producing the average part is known, the cost of the producing 

the entire part group is given by the product of this value and the number of parts in the 

group. The first data column in Table 16 presents the results of this cost modeling work 

for the steel body-in-white.   

 Although the fabrication cost of the composite body design was generally much 

easier to model than the steel design, determining the composite tool investment was 

slightly more complicated because the SRIM composite tool costs vary nonlinearly with 

production capacity. The SRIM tools have a useful life of approximately 250,000 cycles, 
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but the slow cycle times and high reject rates of the SRIM process mean that the tools 

must be purchased at production capacity intervals much shorter than 50,000 APV (over 

five years of production 50,000 APV = 250,000 cycles). To model this effect properly, I 

analyzed the tool investment behavior predicted by the PBCM and then observed (1) the 

unit tool investment and (2) the effective tool replacement period. For the SRIM body the 

unit tool investment is approximately $10,000,000 and the effective replacement period is 

20,000 APV. Thus,  

)
000,20

roundup(000,000,10 APVinvesttool fabbodycomposite ×=  

Equation 38 

 This equation is evaluated at an APV of 100,000 in Table 16 and presented along 

with the remaining cost elements for composite body fabrication determined by the 

results of the SRIM PBCM.  

fabrication costs
Steel Body 
Fabrication 

Composite Body 
Fabrication 

Variable Costs   
Material $379.23 $731.84 
Labor $18.82 $346.98 
Energy $8.91 $36.04 
   
Capital Investments (fixed costs)   
Allocated equipment investment at 100,000 APV $56,100,000 $71,000,000 
Allocated building investment at 100,000 APV $5,700,000 $78,200,000 
Tool investment $41,800,000 $50,000,000* 
 
*equation evaluated at 100,000 APV   

Table 16  Body-in-white parametric fabrication cost model  
 

 Figure 26 plots the resulting average cost curves, using the above values as the 

basis for the parametric fabrication cost model.  As the figure shows, composite 

fabrication costs are relatively steady at about $1,600 per body, due to the high variable 
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costs and recurring tool investments, while steel costs fall dramatically until about 

100,000 APV, at which point the fabrication cost per body is approximately $700.  The 

cost crossover is at about 15,000 APV. 
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Figure 26  Body-in-white fabrication cost 
 
 
Body assembly 

 Body assembly costs for the two designs were modeled in the same PBCMs that 

were used to model closure assembly. As was the case for the closures, determining 

capital investments for the assembly phase of body production required fitting the results 

of the assembly PBCM to a regression. Although the earlier method section explained 

why the capital investments required for assembly processes typically follow a nonlinear 

trend with respect to production capacity, I nonetheless implemented linear regressions 

for the body-in-white assembly process here. However, the R2 values indicate that the 

linear form still provides a decent approximation.  
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Regression equations that approximate body assembly PBCM capital investments: 

• Allocated equipment investment 

96.0)(197000,000,34 2 =+= RAPVinvestequip assemblybodysteel  

Equation 39 

 

88.0)(38000,000,25 2 =+= RAPVinvestequip assemblybodycomposite  

Equation 40 

 

• Allocated building investment 

95.0)(138000,000,48 2 =+= RAPVinvestbld assemblybodysteel  

Equation 41 

 
90.0)(196000,000,34 2 =+= RAPVinvestbld assemblybodysteel  

Equation 42 

 

• Tool investment 

97.0)(88000,000,55 2 =+= RAPVinvesttool assemblybodysteel  

Equation 43 

 
90.0)(54000,000,40 2 =+= RAPVinvesttool assemblybodycomposite  

Equation 44 

 

where APV is annual production volume capacity and all investments are in dollars.  

 I have evaluated each equation at APV = 100,000 in Table 13, in addition to 

listing the variable cost components for each design. 
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assembly costs

Steel Body-in-White
 Assembly 

Composite  
Body-in-White 

Assembly 
   
Variable cost $95.00 $33.80 
   
Capital Investments (fixed costs)   
Allocated equipment investment at 100,000 APV $53,700,000 $6,400,000 
Allocated building investment at 100,000 APV $61,600,000 $4,700,000 
Tool investment at 100,000 APV $63,300,000 $9,800,000 

Table 17  Body-in-white parametric assembly cost model evaluated at 100,000 APV 
 
 Capital cost annualization and overhead/maintenance additions are carried out as 

before. Figure 27 plots the resulting average cost curves. As the figure illustrates, 

composite body assembly costs are a fraction of steel assembly costs, in large part due to 

parts consolidation (200+ parts for the steel body compared to 25 parts in the composite 

design) which significantly reduces the number of assembly steps required.  
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Figure 27  Body-in-white assembly cost 

 

 Adding fabrication costs to the assembly costs yields the total production cost for 

the body-in-white, plotted in Figure 28. The steel and composite curves behave much the 

same way that the closure set production cost curves do, although the steel body is even 

more cost-competitive than the steel closures are at high volumes. As the graph shows, 
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the crossover point between the two body-in-white cost curves is approximately 54,000 

APV (similar to the 64,000 APV point for the closures), but the composite body is 

approximately $700 more expensive than the steel body at high production volumes 

(compared to a $150 cost premium for the composite closures). In percentage terms, the 

composite body is approximately 72% more expensive than steel at high production 

volumes, while the composite closure set is approximately 40% more expensive than 

steel. 
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Figure 28  Body-in-white production cost 
 
 
 
 
 
Material Systems Cost Summary  
 
 Table 12 summarizes the output of the parametric cost model for the closure sets 

and bodies-in-white at two production volumes, 50,000 APV and 150,000 APV, 

assuming that capacity is fully utilized, i.e., that plant capacity equals annual production 

volume. The table identifies variable costs, allocated equipment investments, allocated 

building investments, and tool investments for parts fabrication and assembly phases. 
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 Closure Set Body-in-White 

APV 50,000 150,000 50,000 150,000 
 Steel Comp. Steel Comp. Steel Comp. Steel Comp. 
         
Fabrication         

Variable $228 $310 $228 $310 $407 $1,115 $407 $1,115 
         

All. Equip. $8.4M $4.8M $25.1M $14.5M $28.0M $35.5M $84.1 $106.4 
All. Bld. $0.9M $2.1M $2.6M $6.2M $2.9M $39.1M $8.6 $117.4 

Tool $24.9M $5.5M $24.9M $16.4M $41.8M $30.0M $41.8 $80.0 
         
Assembly         

Variable $14 $105 $14 $105 $95 $34 $95 $34 
         

All. Equip. $7.4M $8.5M $9.2M $5.8M $43.9M $4.4M $63.6M $8.2M 
All. Bld.  $9.3M $5.0M $10.8M $4.5M $54.7M $3.4M $68.6M $6.1M 

Tool $9.7M $5.4M $10.0M $4.6M $59.0M $6.9M $67.5M $12.8M 
         
         

Unit Cost $625 $569 $403 $522 $1,834 $1,771 $1,112 $1,711 
Table 18  Summary of parametric cost model output at 50,000 APV and 100,000 APV for closure set and 
body-in-white 
 
 

Engine cost 

 The engines equipped in the modeled vehicles were assumed to be shared across 

many vehicle lines and their costs therefore were assumed to not be affected by 

individual vehicle production volume decisions. Engine costs were thus modeled as 

constant marginal costs regardless of vehicle production volume. 

 A relationship between engine power and cost for a spark ignition engine found 

by Michalek et al was used to determine the cost of each engine:  

powerecostengine ×+= 0063.051.670  

Equation 45 (Michalek, Papalambros et al. 2004) 
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where power is the maximum power output of the engine in kW and the cost is in dollars. 

This equation is evaluated for a range of engine powers in Figure 29.  
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Figure 29  Engine cost vs. engine power 
 

 This relationship gives a cost of approximately $1,360 for the 95 kW engine and 

$1,700 for the 155 kW engine.  

 

Paint cost 

 Paint costs were modeled as a one time investment and a variable cost. The one 

time investment was assumed to be $500 million, on the basis of industry-reported paint 

shop investments and expert opinions. Variable paint costs were assumed to be $500 per 

car for steel closure vehicles and $560 for composite closure vehicles, based on the input 

of industry experts. The paint cost premium was applied to composite closure vehicles 

because of the added difficulty that painting visible composite panels often entails. The 

one-time investment in paint shop costs were annualized according to Equation 31 using 

a 10-year amortization period. 
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 It should be noted that the model charges the full $500 million paint shop 

investment to each car, though in realty several cars would be painted in the same shop, 

implying that the investment should be spread over several cars.  

 

Additional costs 

 To account for the remaining investments and operating costs required to produce 

the rest of the car, additional cost items were added to the parametric cost model. These 

values were chosen such that the final profit margin on each vehicle (given the prices 

determined earlier) is approximately 3% to 10% for the small and mid-size car, and 

approximately 20% for the luxury car at baseline conditions (depending on the materials 

technology used for body and closures). The additional capital investment is treated as an 

equipment cost and annualized the same way as other equipment investments, using a 10 

year amortization period.  

additional production costs Small car Mid-size car Luxury car 

    
Variable Costs $11,000 $14,000 $30,000 
    
Capital Investments    
Equipment investment $125,000,000 $125,000,000 $80,000,000 
  
Table 19  Additional cost items 
 
 
Total annual cost calculation 

 To translate all of the previous parametric cost elements into annual costs that can 

be integrated into an NPV analysis based on annual cash flows, the total annual cost in a 

given year (and for a given demand observation) needs to be calculated. Finding the total 
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annual cost in turn requires finding the total variable cost per car, the total annual 

production volume, and the total annual fixed cost.  

 The total variable cost of producing each car is given by 

 

additional

paintassemblynfabricatiototal

cost var                                  

cost varcost enginecost varcost varcost var

+

+++=
 

Equation 46 

 

where the var cost terms are the sum of individual variable cost elements (material, labor, 

energy) for closures and bodies-in-white, the single variable cost term for the paint 

phases, and the single variable cost term for additional costs. The engine cost is modeled 

as a marginal cost item so it is also included in the variable cost summation.  

 The total annual fixed cost is given by 

 

additionalpaint

assemblynfabricatiototal

cost fixed annualcost fixed annual                                                   

cost fixed annualcost fixed annualcost fixed annual

++

+=
 

Equation 47 

 

where the annual fixed cost terms are the sum of individual annual fixed cost items 

(equipment, building, tool, indirect labor, and maintenance) for closures and bodies-in-

white, the single annual fixed cost term for the paint phases, and the single annual fixed 

cost term for additional costs. 

 Total annual cost for producing one car in year t for demand observation n is then 
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totalnt,totalnt, cost fixed annual  )volume production annual  cost varcost annual total +×= (
 

Equation 48 

 

where annual production volumet,n is the minimum of market demand (determined by the 

demand uncertainty model) or the production capacity of the plant in year t for demand 

observation n. 

 

capacity) production annual ,nobservatio min(demandvolume production annual nt,nt, =
 

Equation 49 

 

 To evaluate the previous equation under demand uncertainty and fully calculate 

total annual costs, the set of possible demand scenarios needs to be gathered from the 

demand uncertainty model. In the absence of demand uncertainty, though, the expected 

costs can be determined for the five-year project assuming that demand is constant for all 

years.  

 Table 20 thus summarizes all costs of producing the mid-size car at 50,000 APV 

and 150,000 APV without demand uncertainty. At each of these production volumes the 

variable cost, allocated equipment investment, allocated building investment and tool 

investment for producing an all-steel and an all-composite vehicle are given, excluding 

the marginal cost of the engine. The price is constant at $20,769, so the profit margin can 

be calculated with either the $1,360 95 kW engine or the $1,700 155 kW engine.  
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 Mid-size Car 

APV 50,000 150,000 
 All Steel All Comp. All Steel All Comp. 
     

Variable $15,243 $16,070 $15,243 $16,070 
    

All. Equip. $712.7M $675.6M $807.0M $762.7M 
All. Bld.  $67.7M $49.1M $90.5M $134.7M 

Tool $135.4M $47.0M $144.3M $114.7M 
     
Unit Cost      

w/ 95kW $21,367 $21,248 $18,546 $19,224 
w/ 155kW $21,726 $21,607 $18,905 $19,583 

     
Price $20,769 $20,769 $20,769 $20,769 
     
Profit Margin     

w/ 95 kW -3% -2% 11% 8% 
w/ 155kW -5% -4% 9% 6% 

Table 20 Mid-size car parametric cost model summary at 50,000 APV and 100,000 APV 
 

 As the table shows, the all-steel and the all-composite cars are unprofitable at 

50,000 APV, though composites lose slightly less money per vehicle. At 150,000 APV, 

however, both cars are profitable but the steel car does better, earning a profit margin of 

11% with the 95 kW engine (versus 8% for the composite car) and 9% with the 155 kW 

engine (versus 6% for the composite car).  

 

3.2.4 Demand Uncertainty Model 

 To understand how demand for particular vehicles in the U.S. passenger car 

market varies over their sales life, I studied annual sales data for a group of similar cars 

over the first six years of their production. I chose to analyze sales data for subcompact 

and compact cars (as classified by the EPA) because the large number of vehicles in these 
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categories increased the data sample size compared to that of other car market segments. 

However, I restricted my analysis to vehicles that maintained the same body and closure 

style over this six-year period, to control for the fact that automakers often make re-

tooling investments in fresh exteriors over the production life of otherwise unaltered 

vehicles, which can cause endogenous demand shifts.   

 Annual U.S. sales data for the first six full years of production (or less for some 

newer model vehicles) was obtained from Automotive News for the following eight cars: 

Chrysler PT Cruiser, Ford Focus, Acura TSX, Kia Rio, Pontiac G6, Infinity G35, 

Chevrolet Cobalt, and Hyundai Tiburon. The annual sales level for each year was then 

normalized by the sales in the first full year of production, identified as production year 

0. For example, as Table 21 indicates, the Ford Focus entered the U.S. market some time 

during 1999, so 2000 is production year 0 and all subsequent annual sales levels are 

normalized by the sales in 2000. In the case of the Ford Focus, sales dropped steadily 

each year and were only 65% of their initial level five years later. 

 Year U.S. Sales Production Year Normalized Sales 
Ford Focus 1999 55,846
 2000 286,166 0 1.000
 2001 264,414 1 0.924
 2002 243,199 2 0.850
 2003 229,353 3 0.801
 2004 208,339 4 0.728
 2005 184,825 5 0.646
Table 21  Annual sales normalization for Ford Focus 

 

 Figure 30 plots the normalized sales data for all eight cars. The trends illustrate 

that some cars’ sales behave like the Focus, while others inch up each year, and still 
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others oscillate around their initial sales level. The overall sales trend of the entire market 

appears to exhibit zero growth with some volatility from year to year.  
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Figure 30  Normalized annual sales for eight cars 
 
 
 To model this pattern of demand uncertainty, I experimented with different u 

values in the binomial lattice presented in chapter two (with [1+u/1-u] evolution) and 

compared the resulting spread of demand observations predicted by the lattice to the 

actual spread of normalized annual vehicle sales. Figure 31 and Figure 32 present the 

results of this matching exercise, comparing the lattice outcome with u = 0.08 and p = 0.5 

(simulating no growth) to the normalized sales data. For reference, note that the implied 

standard deviation of the demand observations in year 5 is 18%.  

 By visual inspection, the calibrated binomial lattice model appears to fairly well 

characterize the observed demand uncertainty in the compact and subcompact market. 
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Although more sophisticated means of gauging the goodness of fit between the observed 

sales data and the binomial lattice outcome were investigated, such as attempting to 

regress the sales data using time-series cross-sectional statistics methods, ultimately a 

visual inspection was judged to be suitably precise given the scope of the project and the 

purpose of the case study.   

 These lattice values are thus used to simulate demand uncertainty for each car 

modeled in this thesis, given the assumption that each car market segment exhibits 

similar demand trends.4 Note that the starting sales level at year 0 is the expected annual 

sales predicted by the market share model. Annual sales profiles in a subsequent year are 

determined by multiplying the initial sales level by the set of demand observations for 

that year.  The probability of each state is then determined by the associated probability 

lattice (generated according to the method illustrated in chapter two with p = 0.5), 

resulting in the PDF illustrated by Figure 33, which provides a visual representation of 

sales trends.5   

 A “no uncertainty” condition is simulated when the binomial lattice is calibrated 

with u = 0.0 and p = 0.5 

 

                                                 
4 A useful area of further research might study patterns of demand uncertainty in different market segments 
and comment on the assumption made here that demand in each market behaves similarly   
5 The binomial lattice only generates a discrete PDF for the individual demand observations, but a 
continuous approximation was graphed in the figure to make the trends over time easier to see.   
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Figure 31  Binomial lattice observations, u = 1.08, p = 0.5 
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Figure 32  Binomial lattice observations and normalized annual sales data 
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Figure 33  PDF of normalized annual sales with uncertainty 
 
 
 

3.2.5 Regulatory Model 
 

 Depending on the fuel economy of the fleet and the number of vehicles sold in a 

given year, the regulation policy model determines compliance with or assesses penalties 

due to a simplified CAFE policy defined in Equation 19 and Equation 20 (page 69). 

Table 22 presents the range of policy scenarios considered in the analysis: a CAFE 

standard at 27.5 mpg (baseline) and 35 mpg, and penalties at $5.50 (baseline), $15.00, 

and $50.00. The CAFE standards were chosen because they correspond to the current 

level and the 2020 upgrade, while the CAFE penalties were chosen to simulate the 

current level, a moderate upgrade, and a very aggressive increase.  

CAFE standard 
(mpg) 

CAFE penalty  
($/0.01 mpg infraction per car) 

(baseline)   27.5 (baseline)   5.50 
35.0 15.00 

 50.00 
Table 22  CAFE policy scenarios 
 



 119

 As CAFE is a sales-weighted fuel economy standard and sales vary according to 

the outcomes of the demand uncertainty model, both the fleet CAFE value and any 

applicable CAFE penalty are treated as stochastic variables. Determining the present 

value of the expected CAFE penalty requires a multi-step process outlined in Table 23. 

 First, the annual sales of each car in the fleet at each demand observation are 

determined. Next, the fleet CAFE and firm CAFE penalty are determined for each 

demand state, applying Equation 19 and Equation 20. Knowing the probability of being 

in each state, the expected CAFE penalty for each year is determined. These expected 

CAFE penalties are then discounted by a discount rate (12%) and summed, to give the 

present value of the expected CAFE penalties over the life of the project.
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  Period 0 Period 1 Period 2… 
     

Step 1 small car sales volume sales volume sales volume 
 mpg  sales volume sales volume 
    sales volume 
     
 mid-size car sales volume sales volume sales volume 
 mpg  sales volume sales volume 
    sales volume 
     
 luxury car sales volume sales volume sales volume 
 mpg  sales volume sales volume 
    sales volume 
     
     

Step 2  CAFE penalty CAFE penalty CAFE penalty 
   CAFE penalty CAFE penalty 
    CAFE penalty 
     
     

Step 3  p(observation) p(observation) p(observation) 
   p(observation) p(observation) 
    p(observation) 
     
     

Step 4  E[CAFE penalty] E[penalty] E[penalty] 
     
     

Step 5  E[penalty]/(1+r) E[penalty]/(1+r) E[penalty]/(1+r)2 

     
     

Step 6 PV(E[penalty]) = sum(all discounted expected CAFE penalties)  
Table 23  Expected firm CAFE penalty calculation 
 
 

3.2.6 NPV Calculation 

 
 The only values that still need to be determined in order to calculate the expected 

NPV of each of the cars as outlined in Table 6 (page 70) are the after tax cash flows, 

which requires first determining the net revenue and effective tax rate. For a given year t 

and demand observation n, net revenue is given by 

nt,nt,nt, cost annualtotalvolume production annualpricerevenue net −×= )(  

Equation 50 
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where price is the price of each car identified earlier in Chapter Two. The after tax cash 

flow is then 

)1( taxrevenue netCF tax after nt,nt, −×=  

 

where tax is the effective tax rate for the firm, assumed to be 34%.6  

 After all the expected after tax cash flows for five years have been found by 

multiplying the array of after tax cash flows by the array of associated demand 

probabilities (per Table 6), the expected cash flows are discounted at 12% and summed to 

give the expected NPV for the car project.  

 The total NPV for the fleet is then the sum of all individual car project NPVs and 

the present value of the expected CAFE penalty: 

 

])[(][][][] penaltyCAFEEPVNPVENPVENPVEE[NPV carluxury car size-midcar smallfleet −++=
 

Equation 51 

 

                                                 
6 This is a simplistic view of tax that affects all car projects equally. However, the functionality to consider 
tax was included in the model so that more sophisticated treatments which consider the tax benefits of 
capital asset depreciation (among others) can be added later.  



Chapter 4: Case Study Results and Analysis 

 This chapter presents the results of the case study outlined previously: a three 

vehicle fleet (small car, mid-size car, luxury car), optimized by net present value of cash 

flows over five years of production with respect to four decisions for each vehicle 

(materials choice for body-in-white, materials choice for closures, engine size, and 

production capacity). The first section discusses optimal fleet decisions and the ways that 

materials choice influences both project NPV and the production volume at which it 

becomes economically efficient to transition from manufacturing with composites to 

manufacturing with steel (known as the competitive crossover). These initial analyses are 

performed in market environments with and without uncertainty, holding the baseline 

CAFE scenario constant. The second section studies the effect of alternative CAFE 

scenarios on optimal fleet decisions, in the absence of demand uncertainty. Finally, a 

summary of competitive crossovers is presented at the end of the section. 

 

4.1 Baseline CAFE scenario 

 The baseline CAFE scenario corresponds to the current CAFE standard (27.5 

mpg) and the current CAFE penalty ($5.50 per 0.1 mpg infraction per car), both 

calculated according to the simplified CAFE model detailed in chapter three.  

4.1.1 Optimal Fleet Choice at Reference Market Size 

 Table 24 presents the optimal fleet under the baseline CAFE scenario and no 

demand uncertainty, at the reference market size (using the implied market size figures 
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for each car presented earlier in Table 9, on page 85). Note also that while the 

functionality to investigate different powertrain tunings was built into the optimization 

model, all case study scenarios were analyzed holding the final drive variable constant at 

1.0 (the default value).   

 

optimal fleet 

Reference Market Size 
No Demand Uncertainty 

Baseline CAFE 
 Small Car Mid-size Car Luxury Car 

Decision Variables    

Body-in-White steel steel composite 
Closures steel steel composite 

Engine 95 kW 95 kW 155 kW 
Capacity 

 (% of expected year 1 sales) 110% 110% 110% 

    
Performance and Market 
Model Predictions    

Fuel Economy (mpg) 30.4 28.6 21.1 
Acceleration (0-60 sec) 9.1 10.6 7.6 
Expected Year 1 Sales 231,132 172,469 28,284 

  
Regulatory Model and  
NPV Results 

 

Fleet CAFE (mpg) 28.8 
PV(CAFE penalty) $0.0 

Fleet E[NPV] $2.5b 
Table 24  Optimal fleet with no uncertainty, baseline CAFE 
 

 As the table indicates, the optimal fleet under these circumstances includes a 

small car with a steel body, steel closures and small engine, a mid-size car with a steel 

body, steel closures and small engine, and a luxury car with both composite body, 

composite closures, and large engine. All three cars are produced in plants with annual 

production capacities of 110% of their expected first full year of sales. The fleet CAFE is 
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28.8 mpg (above the 27.5 mpg standard, so no CAFE penalty is applied) and the expected 

NPV of the entire project is $2.5 billion (considering cash flows from all five years).  

 Before investigating the specific factors that are driving the materials and engine 

choices, first consider the production capacity decisions. Without any demand 

uncertainty, the expected demand in the first year is 100% likely and constant over the 

life of the project because there is assumed to be no market growth. Given that demand is 

perfectly known and unvarying, there is no benefit to building a plant with excess 

capacity. By this logic, the best production capacity decision for each car should be 100% 

of the expected annual year one sales, but 100% is not a choice as the optimization 

problem is currently framed. Instead, the available production capacity choices are 110% 

or 125% of expected year one sales, so each car project has been driven to the smaller of 

the two.7 The stated result thus doesn’t present the optimal solution considering all 

alternatives, but rather the best choice given the available options in the framed problem. 

This caveat applies to all results presented here. 

 Turning to the materials results, the most straightforward to explain are those for 

the luxury car, which is being sold at an annual production volume of 28,284. At this low 

production volume, composites enjoy a production cost advantage compared to steel. 

Furthermore, the lightweighting effects afforded by using composites—in terms of 

improved fuel economy and improved acceleration—only add to this value. Therefore, 

steel is totally dominated in this case.  

                                                 
7 100% capacity was not included as an option in the no demand uncertainty scenarios in the interest of 
keeping the production capacity options the same for the scenarios with and without uncertainty. As will be 
shown later, the production capacity decision can alter the competitive crossover between steel and 
composites.    
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 At the high production volume of the small car (231,132), and the volume of the 

mid-size car (172,469), however, steel is much more attractive. At these volumes the 

average cost of producing the composite body-in-white is approximately $700 more than 

the steel body and the average production cost of the composite closures is approximately 

$150 more than steel. In order to choose composites over steel in either of these 

applications, the marginal production cost penalty of using composites should be less 

than the marginal benefit of improved fuel economy and improved acceleration that they 

provide.  

 In the modeling framework at hand, this benefit derives from two sources: (1) 

from the increased market share that the firm sees when it improves the performance 

(fuel economy and acceleration) of a modeled vehicle relative to the market-reference 

car, and (2) from the reduced or eliminated CAFE penalties that may result from 

improved fleet fuel economy. The value of the second benefit may be quite significant if 

the use of composites eliminates CAFE penalties entirely by raising fleet CAFE from just 

under the standard to just above it. Even if composites cannot eliminate CAFE penalties, 

though, they may still have some value in reducing penalties by raising a sub-standard 

fleet fuel economy to a higher, but still sub-standard level.  

 Engine choice is influenced by a related tradeoff. Without CAFE, the engine 

decision balances the higher cost of the large engine and its better acceleration but worse 

fuel economy against the lower cost of the small engine and its worse acceleration but 

better fuel economy. With CAFE, however, there might be an additional benefit to using 

the smaller engine—the possibility of eliminating or reducing CAFE penalties by 

improving fuel economy (albeit at the expense of acceleration, unlike the case of 
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composites). This could possibly be the reason for the 95 kW engine in the small and 

mid-size car. As this thought exercise demonstrates, understanding the firm’s cost-benefit 

calculation given all technology combinations and the resulting fleet CAFE/CAFE 

penalties is exhausting work—hence the use of an optimization model. 

 But by setting the CAFE standard to 0 mpg and re-running the optimization we 

can compare the new results to the baseline case and see if the 27.5 mpg CAFE policy is 

indeed constraining the problem. As it turns out, performing this experiment yields the 

same optimal fleet decisions as before, so the policy is in fact not constraining. (The 

results table is identical to Table 24 so it has not been reproduced.)  

 Since CAFE is not constraining, the technology decisions are being driven by the 

performance-derived value which the firm sees through market share gains when fuel 

economy or acceleration improve. While the market model that is implemented in the 

spreadsheet optimization tool utilizes several relationships that calculate this market share 

gain directly, these performance-market share relationships can be translated into 

performance-value relationships by (1) observing the shift in the market share curves due 

to a change performance and then (2) altering the price to reset the resulting market share 

back to the reference market share. The price that negates the market share gain is 

equivalent to the consumer’s willingness to pay for that performance improvement. 

Essentially, this method observes two points on the shifted demand curve, as illustrated in 

Figure 34. 
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Figure 34  Method of determining value to due a performance shift 
  

 The first step in the process begins at the lower left point. This point represents 

the market share m that a car with 25 mpg fuel economy and price p garners. When the 

fuel economy of the car is improved to 35 mpg at the same price, the market share 

increases from m to m’. If the price of that car is then increased to price p’, (using a 

relationship between price and market share), the market share is reset to the level of the 

25 mpg car. The difference between p and p’ represents consumers’ willingness to pay 

for a 10 mpg fuel economy improvement.  

 Bjelkengren devised and employed such a method for each car using the 

performance-market share relationships previously identified in this thesis in conjunction 

with a price-market share relationship that she also observed from the Market Insight 

data. More information on this method, including the price-market relationships, can be 

found in Bjelkengren’s master’s thesis (Bjelkengren 2008).  
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 The resulting performance-value relationships are illustrated in graphical form 

below, first in absolute measures (mpg vs. dollars, seconds vs. dollars), and then as 

percent fuel economy improvement vs. dollar value and percent acceleration 

improvement vs. dollar value. Note that Bjelkengren only reported the value change due 

to an improvement in performance from the reference vehicle’s performance. To plot 

these curves I have assumed that the value of losing performance is equal in magnitude 

and opposite in sign to the value of gaining performance. This assumption was necessary 

because some of the modeled vehicles analyzed in this thesis have worse performance 

than the reference car Bjelkengren used to derive the market share relationship, 

depending on the engine option chosen here.  

 An inspection of the value curves which are plotted as a function of percent 

performance changes reveals that all three car markets value fuel economy changes 

linearly, with the luxury car market most sensitive to fuel economy variations from the 

reference level. (Figure 37) Yet the acceleration value curve portrays a different story. 

Figure 38 indicates that the small car market is most sensitive to acceleration changes 

from reference, but that this trend decreases as acceleration changes grow, until the small 

car market becomes indifferent to acceleration improvements or reductions of +20%/-

20% from the reference 0-60 time.  The mid-size car market follows a similar pattern 

though it is less sensitive to a given acceleration change than the small car market. The 

luxury car market, in contrast to the other two, continues to value acceleration changes 

linearly over the range of acceleration variations studied. 
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Figure 35  Value of fuel economy improvements 
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Figure 36  Value of acceleration improvements 
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Figure 37  Value of (percent) fuel economy improvement 
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Figure 38  Value of (percent) acceleration improvement
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 Table 25 uses these value curves as a guide to walk through a back of the 

envelope cost-value analysis for using either steel or composite closures in the mid-size 

car with a steel body and a 95 kW engine at the reference market size.  

 Market 
Reference  

Mid-size car 

95 kW Mid-size Car
Steel Body 

 Steel Closures 

95 kW Mid-size Car 
Steel Body 

 Composite Closures 
    

Closure Set Mass (kg)  124.8 79.3 
Total Vehicle Mass (kg)  1502.2 1422.9 

∆ Vehicle Mass (kg)   -45.2 (-3%) 
    

Acceleration (0-60 sec) 8.1 10.6 10.3 
∆ Acceleration (sec)  -2.5 -2.2 
Value Due to ∆ acc  -$430 -$430 

    
Fuel Economy (mpg) 22.2 28.6 28.9 

∆ Fuel Economy (mpg)  6.4 6.7 
Value Due to ∆ fe  $1045 $1080 

    
Total Value  $615 $650 

 at ~170,000 APV 
Net Value of Using Composites $45 

Cost Penalty of Using Composites -$150 
Table 25  Cost-value analysis for composite and steel closures in mid-size car at reference market size 
 

 As the table indicates, using the composite closure set saves 45 kg, or 3% of total 

vehicle mass compared to the car with steel closures. The 45 kg savings is large relative 

to the mass of steel closures, but small when the total car is considered.  

 Next, the acceleration and fuel economy of the cars using steel and composites are 

determined by means of the performance model. (The results printed in the table are an 

output of the ADVISOR-based statistical regressions detailed in Chapter Three.) Note 

that the 95 kW engine used in the modeled mid-size cars is likely much smaller than the 

engine used in the reference mid-size car from which the market share relationships were 

determined, which causes the acceleration of the modeled vehicles to be much slower and 
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the fuel economy to be much higher, relative to the reference. The most important factor 

for this analysis, however, is the relative difference between the performance of the steel 

and composite vehicle, not the overall difference between either modeled vehicle and the 

reference car. For example, while each modeled vehicle is much slower than the 

reference car (the steel car is 2.5 seconds slower and composite car is 2.2 seconds 

slower), using composites improves the 0-60 time by three tenths of second (10.3 sec vs. 

10.6 sec) compared to using steel. This is roughly a 3% difference, which is consistent 

with the 10-10 rule approximation that holds that a 3% mass reduction should improve 

fuel acceleration time by 3%. (In this case, the 3% mass reduction is the total vehicle 

mass reduction afforded as a result of using composite closures instead of steel.) 

 But this performance advantage isn’t translated into any value advantage because 

the mid-size car acceleration-value curve flattens out beyond acceleration improvements 

or reductions of +2 and -2 seconds relative to the reference car (Figure 36). Even though 

composites only improve performance by 0.3 sec, or 3%, compared to steel, the absolute 

difference between composites and the reference car is more than 2 seconds (about 25% 

of the 8.1 seconds reference acceleration for the mid-size car).  The underlying causes of 

the shapes of these value curves (and the market share curves from which they are 

derived) should be investigated further,8 but for now this result suggests that the reference 

cars and the technology options should have been chosen such that the anticipated range 

of the technology-influenced performance variations in the modeled vehicles occurs 

within a domain where the associated market responses are non-zero. Better still; one of 

the modeled engines should have been chosen to mimic the actual engine of the reference 

                                                 
8 At the lower extreme this behavior probably doesn’t make sense. If acceleration is truly awful the market 
share (and thus the value) should approach zero.  
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car, which would have yielded some car options that replicated the performance of the 

reference car. Then the performance shift due to a lightweight materials-influenced mass 

reduction (in a modeled car with engine similar to the reference car) would have occurred 

around the origin of the performance-market share curves where the response is non-zero 

and also probably most accurate. In the end, the both of the modeled vehicles have a 

value loss of about $430 due to acceleration. 

 This problem is less significant for fuel economy because the fuel economy-value 

curves are approximately linear over a large range of fuel economy changes from the 

reference value (origin). As the table indicates, the modeled vehicle with the steel 

closures has a fuel economy of 28.6 mpg, while the fuel economy of the composite 

closure vehicle is 28.9 mpg, both more than 6 mpg greater than the reference car. The 

fuel economy advantage of using composites compared to steel is 0.3 mpg, 

approximately 1.0% better than steel. This is fairly consistent with the relevant 

engineering rule of thumb (10-5 rule for fuel economy) which holds that a 3% total 

vehicle mass reduction should improve fuel economy by about 1.5%. In relation to the 

reference car, the fuel economy improvements yield $1045 of value for the car with steel 

closures and $1080 of value for the car with composite closures.  

 Considering the value loss from slower acceleration and the value gain from 

improved fuel economy, the total performance-derived value is $615 for the car with steel 

closures and $650 for the car with composite closures. The net value of using composites 

is the difference between these two figures, $45. The net cost of using composites is the 

production cost penalty associated with manufacturing composite closures at the 

reference market scale, corresponding to approximately 170,000 units per year. At this 
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volume, the average production cost of the composite closure set is about $150 more than 

steel. As the net cost of using composites ($150) is greater than the net value of using 

composites ($45), steel is the better choice. Similar estimates show that steel is preferred 

for the body of the mid-size car and both the closures and body for the small car.   

 Finally, note that the small and mid-size cars are equipped with the small engine 

while the luxury car has the more powerful option. Table 26 presents a cost-value 

analysis to examine the factors affecting engine choice (heeding the finding that CAFE is 

not constraining), using the case of an all-composite luxury car.  

 Market 
Reference 
Luxury Car  

95 kW Luxury Car 
All Composite 

155 kW Luxury Car 
 All Composite 

    
Engine Mass (kg)  123.0 160.0 

Total Vehicle Mass (kg)  1611.5 1648.5 
∆ Vehicle Mass (kg)   -37 (-2%) 

    
Acceleration (0-60 sec) 6.95 11.2 7.58 

∆ Acceleration (sec)  -4.3 -0.63 
Value Due to ∆ acc  -$2,600 -$340 

    
Fuel Economy (mpg) 18.7 27.8 21.2 

∆ Fuel Economy (mpg)  6.4 6.7 
Value Due to ∆ fe  $2,765 $1000 

    
Total Value  $165 $660 

  
Net Value of Using 155 kW engine $495 

Cost Penalty of Using 155 kW engine -$360 
Table 26  Cost-value analysis for small and large engine in luxury car at reference market size 
 
 As the table shows, using the smaller engine saves mass (the table reports that the 

car with the larger engine is 37 kg heavier) and offers much better fuel economy—but 

much slower acceleration than the reference car, resulting in a net value of $165. The 

larger engine, by contrast, yields similar acceleration and slightly better fuel economy 
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than the reference car, affording a $660 relative value increase. The net value of the 

larger engine is thus $495, which is greater than its $360 cost penalty (the marginal cost 

difference of the two engines is $1,700 - $1,360), making it the preferred choice. Note 

that the production cost of the engines are assumed to be constant, regardless of 

production volume, so this analysis should hold for any market scale, assuming no 

additional regulation costs. However, this choice could go the other way if the cost 

penalty of the large engine were only $140 more, implying that the result is sensitive to 

engine costs and suggesting that an investigation of the robustness of the engine cost 

relationship used in this thesis would be insightful.     

 Two important points should be made before continuing to discuss the rest of the 

results. First, the cost-value analysis for the engine further reveals that the performance of 

some modeled car combinations is vastly different than the reference cars used to 

construct the market share relationships, suggesting that the market response to these 

atypical modeled vehicles might be questionable. For example, the previous table implies 

that using a 95 kW (127 hp) engine in a $50,000 luxury car to achieve 11.2 seconds 0-60 

mph time will only result in a $2,600 value loss per car, but no luxury car has been sold 

in recent years with such sluggish performance. The true value loss from such an engine 

choice could easily be much higher. Second, while the previous analyses are useful to get 

a quick idea of the directional effects caused by different technology choices, they do not 

fully explain the optimization results because they do not present an exhaustive treatment 

of all marginal options. For example, the decision to use composite or steel closures in 

the mid-size car depends on their marginal costs and benefits considering the rest of the 

technology decisions which affect fuel economy and acceleration. In the sample 
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calculation this was defined as a 95 kW engine and steel body-in-white, but the analysis 

will look different if the closure choices are compared in a car with a 95 kW engine and 

composite body-in-white, because the market values acceleration changes nonlinearly. In 

the case where the rest of the vehicle includes a composite body, the car’s acceleration 

will start at a higher point even before the closures materials option is considered. This 

might mute the effect of further acceleration increases that could be realized by choosing 

to manufacture the closure set from lightweight composites. This type of marginal 

analysis is accomplished in the optimization model because the NPV of every technology 

combination is calculated.  

 The optimization results presented in this section hold for the reference market 

size, but changes to this market size (and thus the associated production volumes) reveal 

more of the competitive dynamics of composites and steel, which have already been 

shown to vary at least on a cost basis.  

    

4.1.2 Optimal Fleet Sensitivity to Market Size  
 
 Table 27 presents the optimal fleet choices at five different reference market 

scales: 20%, 40%, 60%, 80%, and 100% of the reference market size. In each of these 

cases, the market size for each car was reduced by the stated percentage. Given that the 

interesting cost dynamics between composites and steel occur at low production volumes, 

only lower market size sensitivities are presented here. However, it should be noted that 

optimizations were run at market sizes between 100% and 150% of the reference size 

without observing any changes to the optimal fleet choices.   
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 As the table shows, the optimal fleet choices at the reference market size are 

robust until the market is reduced to 20% of the reference size, at which point the small 

and mid-size cars become all composite vehicles. This result isn’t surprising, given that 

the annual production for these vehicles at 20% of the reference market size is 

approximately 49,000 APV and 35,000 APV, respectively. These production volumes are 

well below the cost-competitive point of composite body production and composite 

closure production. However, note that the optimal fleet as a whole isn’t profitable at this 

scale, yielding a $0.6 billion loss to the firm over the life of the project.



 

optimal fleet 

No Demand Uncertainty 
Baseline CAFE 

      
percent of reference 

market size 0.2 0.4 0.6 0.8 1.0 

Small car      
Body-in-White composite steel steel steel steel 

Closures composite steel steel steel steel 
Engine 95 kW 95 kW 95 kW 95 kW 95 kW 

Capacity 110% 110% 110% 110% 110% 
Fuel Economy (mpg) 31.5 30.4 30.4 30.4 30.4 

Acceleration (0-60 sec) 8.4 9.1 9.1 9.1 9.1 
Expected Year 1 Sales 48,634 92,453 138,679 184,906 231,132 

      
Mid-size car      

Body-in-White composite steel steel steel steel 
Closures composite steel steel steel steel 

Engine 95 kW 95 kW 95 kW 95 kW 95 kW 
Capacity 110% 110% 110% 110% 110% 

Fuel Economy (mpg) 29.6 28.9 28.9 28.9 28.9 
Acceleration (0-60 sec) 9.7 10.3 10.3 10.3 10.3 
Expected Year 1 Sales 35,076 68,988 103,481 137,975 172,469 

      
Luxury car      

Body-in-White composite composite composite composite composite 
Closures composite composite composite composite composite 

Engine 155 kW 155 kW 155 kW 155 kW 155 kW 
Capacity 110% 110% 110% 110% 110% 

Fuel Economy (mpg) 21.2 21.2 21.2 21.2 21.2 
Acceleration (0-60 sec) 7.6 7.6 7.6 7.6 7.6 
Expected Year 1 Sales 5,657 11,314 16,971 22,628 28,284 

      
Fleet CAFE (mpg) 29.9 28.8 28.8 28.8 28.8 
PV(CAFE penalty) $0 $0 $0 $0 $0 

Fleet E[NPV] -$0.6b $0.1b $1.0b $1.7b $2.5b 
Table 27  Optimal fleet choice sensitivity to market size 
 
 
 To closely examine the competitive dynamics between composites and steel, 

more narrow production volume crossover regimes were determined by running multiple 

optimizations using market scaling factors between 20% and 40% (for the small and mid-
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size car), and well above 100% for the luxury car. If necessary, the NPV of competing 

projects (small car with composite body and small car with steel body, for example) were 

themselves plotted over a range of market sizes to better characterize the causal trends.     

 

4.1.3 Competitive Crossovers without Uncertainty 
 
 One of the general hypotheses underlying this work is that the effects of two 

factors: (1) performance-derived value and (2) asymmetric returns due to demand 

uncertainty and capacity limits, may advantage composites compared to steel in 

automotive applications. This implies that when these effects are considered, the 

production volume at which it becomes economically efficient to transition from using 

composites to using steel shifts from the cost-competitive production volume to a higher 

one.  

 However, using an optimization model with several production capacity options 

confounded this examination because the competitive production volume crossovers 

sometimes move in unanticipated ways—even in the absence of demand uncertainty, 

which can be illustrated by a simplified example. First consider two competing projects: 

steel and composites. At small market sizes,9 composites are less expensive than steel and 

offer some performance-derived value, implying that the NPV of the composite project is 

higher than steel. (See Figure 39, which presents a simple plot of production cost and 

NPV on the same market size axis.) As market size (and production volume) increase, the 

                                                 
9 Cost-competitive crossovers are usually discussed in terms of annual production volume, but the NPV 
model used in this thesis scales by total market size because demand (production volume) is determined as 
a percent of this size, subject to market preferences for vehicle performance.  Given one market size, the 
demand/production volume for a steel car and composite car can be different if they have different 
performance.  
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production cost benefit that composites enjoy decreases until they cost the same as steel. 

Yet there is still some value to using composites because of the performance gains that 

lightweighting affords, so the NPV of the composites project will still be higher than steel 

until some point after the cost-competitive crossover. The relative cost of using 

composites continues to increase until it is greater than the value of using composites, at 

which point the efficient choice transitions to steel. This crossover shift (from the cost-

competitive point to a higher one) is illustrated in Figure 39 by the shift of cr to cr’. 

 

Figure 39  Performance-derived value of composites shifts the competitive crossover to higher market 
size/production volume (not to scale)  

 

 Now consider the effect of increasing the production capacity of both projects by 

10% without any additional sales This reflects the case in the baseline scenario in which 

each car project builds plant capacity to 110% of expected annual sales without any 

possibility of selling above 100% of expected sales. The extra 10% capacity is thus 

unutilized. As capital costs are greater but revenues remain constant, the NPV of a project 
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built with capacity of 110% of expected sales should be shifted down from the NPV of a 

project built to exactly 100% expected sales. Furthermore, steel is more capital-intense 

than composites, so the cost spent on 10% extra capacity for the steel project is greater 

than the cost spent on 10% extra capacity for the composites, which causes the steel NPV 

curves to shift more than the composite NPV curves. Figure 40 graphs the resulting NPV 

plots. As a graph shows, the steel NPV curve shifts more, from steel 100% to steel 110%, 

than the composite curves do, composite 100% to composite 110%. This moves the 

crossover point from cr’ to cr’’ at a higher production volume.  

 

Figure 40  Building unutilized capacity shifts the crossover to higher market size/production volume 
 (not to scale) 

 

 However, this simplification ignores the fact that recurring costs can lead to 

discontinuous NPV jumps. For example, the tool costs that composite body-in-white 

production entails are modeled in this thesis as a $10,000,000 investment every 20,000 
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APV of production capacity.10 When this cost is lumped into total cost and spread over 

all units produced over the life of the project, as is done in the unit cost curves, it isn’t 

very noticeable, but when it is viewed in absolute terms it appears as a sharp downward 

spike in the total composite NPV, shown in Figure 41.  

 Furthermore, when plant capacity is built to accommodate 110% of expected 

sales, the expected production volume at which another unit tool investment is required 

will be smaller than the case for which plant capacity is built to 100% of expected sales. 

Table 28 helps explain.   

Expected Sales/Prod. Vol: 17,000 APV 18,000 APV 19,000 APV 20,000 APV 

 purchase $10m tools for every 20,000 APV of capacity 

Build Capacity to:     
100% of Expected Sales     

Plant Capacity (APV) 17,000 18,000 19,000 20,000 
Required Tool Investment $10m $10m $10m $20m 

     
110% of Expected Sales     

Plant Capacity (APV) 18,700 19,800 20,900 22,000 
Required Tool Investment $10m $10m $20m $20m 

Table 28  Composite body tool investments at 100% capacity and 110% capacity  
 
 The table presents the required tool investments for two strategies: building plant 

capacity to 100% of expected sales and building capacity to 110% of expected sales, at 

four expected sales levels. As the table shows, when the expected sales level is 19,000 

APV, the strategy which calls for building plant capacity to 110% of this level plans for a 

plant capacity of 20,900 APV, meaning that two unit tool investments of $10 million 

must be made. By contrast, the strategy which builds only to 100% of expected sales does 

                                                 
10 Recall that all tool investments are assumed to be made at once, at the beginning of the project based on 
the planned plant scale—not as the tools wear out.  
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not plan to make the second unit tool investment until the expected sales level reaches 

20,000 APV. 

 This implies that not only is the NPV of the composite project at 110% capacity 

shifted down from the 100% composite NPV curve (because of the added cost of 

unutilized capacity), but each investment spike also occurs at a smaller market scale. If 

the steel NPV curves happen to intersect the composite NPV curves along the 

discontinuity, it can appear that the crossover has shifted left, contrary to the above case 

without recurring investments.   

 

Figure 41  Tool investment discontinuity causes crossover to shift to lower market size/production volume 
(not to scale) 

 

 To understand how large this effect can be, competitive NPV crossovers were 

observed (via the optimization model) for the body-in-white and closures for each car at 

110% and 125% production capacity—in addition to 100% production capacity. These 

crossovers are presented in Table 29 along with the crossover predicted by the cost model 

only (which effectively assumes 100% production capacity).  
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 As mentioned previously, the NPV model predicts crossovers at market sizes, not 

production volumes, because the production volume is discontinuous over the technology 

crossover. (After switching to steel along the market size crossover, vehicle performance 

deteriorates and demand falls.) But in the aim of making this information easier to 

comprehend, I have presented the crossover points by production volume, not market 

size. The values listed in Table 29 correspond to the demand level for the composite 

material option at the market scale just before the NPV model predicts a switch to steel.  

 Cost Model  
Predicted 
Crossover 

NPV Optimization Model  
Predicted Crossover 

No Demand Uncertainty 
Baseline CAFE 

annual production 
volume  Small Car Mid-size Car Luxury Car 

Body ~54,000    
100% Capacity  ~58,000 ~56,000 ~98,000 
110% Capacity  ~54,000 ~54,000 ~90,000 
125% Capacity  ~51,000 ~50,000 ~93,000 

     
Closures  ~64,000    

100% Capacity  ~80,000 ~70,000 no crossover 
110% Capacity  ~77,000 ~67,000 no crossover 
125% Capacity  ~75,000 ~66,000 no crossover 

Table 29  Comparison of cost-competitive crossover and NPV crossover at three capacities 
 
 
 As the technology decisions have been shown to be unconstrained by the baseline 

CAFE policy, the NPV crossovers reported here are similarly unaffected by fuel 

economy policy. Therefore, the table primarily documents two effects: (1) by considering 

market value, the crossovers are shifted to higher production volumes compared to the 

cost-competitive points, but (2) adding unused capacity often makes composites less 

competitive due to the effect of recurring investments explained above. 

 The magnitude of the crossover shift due to the first effect, performance-derived 

market value, depends on the vehicle application. The body-in-white crossover is shifted 
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just 2,000 to 4,000 APV in the small and mid-size car, but more than 40,000 APV (to 

98,000 APV) in the luxury car when capacity is limited to 100%. The crossovers are even 

higher for the closure set: 80,000 in the small car, 70,000 in the small car, and there is no 

crossover predicted for the luxury car, implying that the value of using composites in this 

application is always greater than their cost for any production volume.  

 The difference in the magnitude of the crossover shift from one car to another is 

due to the relative value that each vehicle market places on performance improvements, 

while the difference between the body and the closures is due to the rate at which each 

becomes less cost-competitive with steel as market size (or production volume) increases. 

Figure 42 and Figure 43 expand the production cost plots of the body-in-white and the 

closure set around the cost-competitive point to illustrate the latter distinction. As the 

figures show, at a point 20,000 APV beyond the cost-competitive crossover for body-in-

white production, composites are at a $500 disadvantage, while at a point 20,000 APV 

beyond the cost-competitive crossover for closure production, composites are only at a 

$50 disadvantage. Furthermore, the composite closure cost disadvantage never gets much 

greater than $180, even at very high production volumes (see Figure 25).  

 

 

 

 

 



 146 

 

Figure 42  Expanded view of steel and composite closure production cost 
 

 

 
Figure 43  Expanded view of steel and composite body-in-white production cost 

 
 
 

 
 Yet as documented earlier, many modeled mid-size car variations have predicted 

acceleration times that are far worse than the reference car and lie in a regime on the mid-

size car performance-value curve that is essentially flat, meaning that the small but 

important predicted acceleration advantage of using composites compared to steel in the 
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mid-size car is worthless in terms of its calculated NPV.  As a consequence, the mid-size 

car crossovers predicted by the baseline analysis are probably too conservative. To study 

how this modeling problem can be mitigated, the next section presents the crossover 

results following the implementation of a variation to the mid-size car performance 

model. 

 
 

4.1.4 Crossover Sensitivity to Market Model (Value) Adjustment   
 
 Table 30 presents the NPV competitive crossovers for the mid-size car at 110% 

capacity following a re-centering of the reference car’s acceleration from 8.1 seconds to 

10.1 seconds.  By increasing the reference acceleration, the acceleration of the modeled 

mid-size cars using either steel or composites are much closer to the origin of the 

performance-value curve, where even small variations (the acceleration gain from using 

lightweight composites) yield nonzero market value responses. This improves the net 

value of using composites (compared to steel) and shifts the crossover point for both the 

body-in-white and the closures to higher production volumes. Note that the closure 

crossover shifts much more than the body-in-white crossover because the cost penalty of 

using composite closures increases more slowly than the cost penalty of using a 

composite body. (See previous figures) 
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 Cost Model 
Predicted 
Crossover 

NPV Optimization Model  
Predicted Crossover 

No Demand Uncertainty, 110% Capacity 
Baseline CAFE 

annual production 
volume  Small Car Mid-size Car Luxury Car 

Body  54,000    
No Adjustment  ~54,000 ~54,000 ~90,000 

Mid-size Car + 2 sec   ~58,000  
     

Closures  64,000    
No Adjustment  ~77,000 ~67,000 no crossover 

Mid-size Car + 2 sec   ~93,000  
Table 30 Mid-size car crossover shift due to a re-centering of the reference car acceleration 
 
 
 

 
 

4.1.5 Optimal Fleet Choice under Demand Uncertainty  
 
 
 Having investigated the effects of performance-derived value and excess 

unutilized capacity on the competitive dynamics between steel and composites, the NPV 

optimization model was re-run including the demand uncertainty simulation, still holding 

CAFE at the baseline scenario. The optimal fleet choice results at five market sizes under 

this scenario are presented in Table 31. At this market size resolution the only observable 

differences between the optimal choices without uncertainty and with uncertainty are the 

production capacity of the luxury car and the production capacity of the mid-size car after 

it transitions to an allnsteel vehicle. The optimal production capacity choice is now 125% 

of expected sales for these cars, implying that they are better suited to capture the upside 

of demand uncertainty.  

 The underlying reason relates to the profit margin on each vehicle. The low profit 

margin on the small car (6% when capacity is at 110% of expected sales) means that the 
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marginal profit of selling more cars is small compared to the cost of adding even more 

excess capacity. By contrast, the mid-size steel car has a profit margin of 10% and the 

luxury car has a profit margin of 21% (each calculated at 110% of expected sales), 

meaning that the benefit of adding extra capacity to capture potential upside sales can be 

large.



 

optimal fleet 

With Demand Uncertainty 
Baseline CAFE 

      
percent of reference 

market size 0.2 0.4 0.6 0.8 1.0 

Small car      
Body-in-White composite steel steel steel steel 

Closures composite steel steel steel steel 
Engine 95 kW 95 kW 95 kW 95 kW 95 kW 

Capacity 110% 110% 110% 110% 110% 
Fuel Economy (mpg) 31.5 30.4 30.4 30.4 30.4 

Acceleration (0-60 sec) 8.4 9.1 9.1 9.1 9.1 
Expected Year 1 Sales 48,634 92,453 138,679 184,906 231,132 

      
Mid-size car      

Body-in-White composite steel steel steel steel 
Closures composite steel steel steel steel 

Engine 95 kW 95 kW 95 kW 95 kW 95 kW 
Capacity 110% 125% 125% 125% 125% 

Fuel Economy (mpg) 29.6 28.6 28.6 28.6 28.6 
Acceleration (0-60 sec) 9.7 10.6 10.6 10.6 10.6 
Expected Year 1 Sales 35,076 68,988 103,481 137,975 172,469 

      
Luxury car      

Body-in-White composite composite composite composite composite 
Closures composite composite composite composite composite 

Engine 155 kW 155 kW 155 kW 155 kW 155 kW 
Capacity 125% 125% 125% 125% 125% 

Fuel Economy (mpg) 21.2 21.2 21.2 21.2 21.2 
Acceleration (0-60 sec) 7.6 7.6 7.6 7.6 7.6 
Expected Year 1 Sales 5,657 11,314 16,971 22,628 28,284 

      
Fleet CAFE (mpg) 29.9 28.8 28.8 28.8 28.8 
PV(CAFE penalty) $0 $0 $0 $0 $0 

Fleet E[NPV] -$0.6b $0.1b $1.0b $1.7b $2.5b 
Table 31  Optimal fleet choice under uncertainty, baseline CAFE 
 
 The information that isn’t conveyed in the table above, though, is whether the 

crossovers have shifted at all under demand uncertainty, and if in fact the hypothesis that 

demand uncertainty improves the competitive position of composites compared to steel is 

supported.  
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4.1.6 Crossover Sensitivity to Demand Uncertainty  
 
 Analyzing the crossover shifts due to demand uncertainty is not straightforward 

given the way the problem has been framed and the unexpected capacity effects 

explained previously. When the optimization model simulates demand uncertainty and 

offers two production capacity decisions, the best choices for a given car may transition 

from composites at 110% capacity to steel at 125%, in which case the crossover point 

may be affected by the capacity effect. Likewise, the best production capacity choices for 

a given car will always be 110% without uncertainty, but if the best choice is 125% with 

uncertainty (for either the steel or composite option around a crossover), the crossover 

point may similarly have moved in unanticipated ways.  

 Table 32 highlights these concerns, as the crossovers predicted by the NPV model 

appear to have moved to a lower production volume for several vehicle applications. The 

notable exception is the crossover for the closures in the small car, which has shifted 

from 77,000 APV at 110% capacity without uncertainty to 80,000 APV at 110% capacity 

with uncertainty.  
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 Cost Model 
Predicted 
Crossover 

NPV Optimization Model  
Predicted Crossover 

Baseline CAFE 
 Small Car Mid-size Car Luxury Car 

annual production 
volume  (composite capacity – steel capacity) 

Body  ~54,000    

No Uncertainty  ~54,000 
(110%-110%)

~54,000 
(110%-110%) 

~90,000 
(110%-110%) 

With Uncertainty  ~54,000 
(110%-110%)

~54,000 
(110%-125%) 

~93,000 
(125%-125%) 

Closures ~64,000    

No Uncertainty  ~77,000 
(110%-110%)

~67,000 
(110%-110%) no crossover 

With Uncertainty  ~80,000 
(110%-110%)

~66,000 
(125%-125%) no crossover 

Table 32  Crossover shifts under demand uncertainty 
 
 
 To better understand the competitive dynamics of different projects under 

uncertainty, the case of the mid-size car closures is investigated in detail. Figure 44 

presents the NPV of the three competing options around the mid-size car closure 

crossover in terms of the difference between the competing project and the low-volume 

choice, without uncertainty. That is, the NPV of the composite closures at 110% capacity 

is taken as a reference because it is the optimal choice at small market sizes in the 

absence of uncertainty. Then, the NPV of each of the three other alternatives: steel with 

110% capacity, composites with 125% capacity, and steel with 125% capacity, are 

plotted in terms of the difference between the NPV of the reference project (composites 

at 110%) and the respective alternative.    
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Figure 44  Mid-size car NPV crossover for closure set, no uncertainty 
 
 
 Any project plotted with an NPV difference below $0 in Figure 44  should be 

preferred to the reference project because the negative NPV difference implies that the 

NPV of the alternative project is greater than the reference. Thus, the line plotting the 

difference between the NPV of the reference project and the NPV of composites with 

125% capacity is always positive because in the absence of uncertainty, the extra unused 

capacity makes the 125% composites project less valuable. However, the NPV of the 

alternative steel projects are downward sloping because they are becoming more 

competitive with composites as market size (and production volume) increase. The 

crossover occurs at a market scale of just under 40% of the reference size (~67,000 

APV), when the efficient choice transitions to steel with 110% capacity.  

 



 154 

 

Figure 45  Mid-size car NPV crossover for closure set under uncertainty 
 
 
 The competitive dynamics look different under uncertainty, as shown in Figure 

45. Now the composites project with 125% capacity is preferred to the reference 

composites project with 110% capacity at small market sizes (the NPV difference line is 

negative) because of the profit margin effect explained earlier—the mid-size car has a 

high enough profit margin to be able to take advantage of building 125% capacity. The 

crossover now occurs when the NPV curve for composites with 125% capacity crosses 

the NPV curve for steel with 125% capacity at a market scale of approximately 0.39 

(~66,000 APV). This is a small shift of 1,000 APV to a smaller production volume.   

 Even if opposing effects would otherwise cause the crossover point to shift to 

higher production volumes, the above analysis suggests that the dominant effect causing 

the mid-size car closure set crossover to shift to a smaller production volume under 

uncertainty is the unanticipated movement caused by capacity-influenced recurring 

investment schedules. For further proof, note that without uncertainty, the crossover point 
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for the mid-size car closure set also shifted to smaller production volumes when capacity 

was increased from 110% to 125% (Table 29).  As the optimal choice under uncertainty 

similarly switches from 110% capacity to 125% after the crossover here, the underlying 

causes are likely related.  

 Yet if the capacity effects can be mitigated—by studying the crossovers at the 

same production capacity with and without uncertainty—the effect of demand uncertainty 

on the crossover point can be isolated. Figure 46 presents the results of such an analysis, 

plotting the NPV difference between composite closures in the mid-size car with 110% 

capacity and steel closures with 110%, with and without uncertainty. The solid line plots 

the NPV difference between composites and steel without uncertainty and shows that the 

crossover point is, as documented above, at a market size just below 40% of the reference 

size. When the NPV model simulates demand uncertainty, however, the NPV difference 

curve shifts to the right and the crossover moves to a market scale just greater than 40% 

of the reference size. This crossover shift corresponds to an annual production volume of 

about 1,500 APV.  
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Figure 46  Crossover shifts right under uncertainty at same production capacity 
 
  

 The magnitude of this shift is small but the direction is consistent with the 

hypothesis that was originally posited: composites are more competitive compared to 

steel in an environment of demand uncertainty. Investigating the above case further 

reveals the mechanics that underlie the competitive shift, as calculated by the NPV 

simulation.    

 Figure 47 plots the difference of the year five cash flow NPV for each project, 

without uncertainty. When demand uncertainty is considered at any expected market size, 

the simulation model calculates the probability of discrete cash flows according to the 

distribution established by the binomial lattice model for period five, subject to the 

constraint that capacity is limited to 110% of the sales level at the expected market size.   
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Composite Closures vs. Steel Closures 
Mid-size car, Baseline CAFE, 110% Capacity

Probabilistic Cash Flows at Year 5 for 0.4 Expected Market Size
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Figure 47  NPV composites – NPV steel and discrete probabilities for 0.4 expected market size 
  

 
 For an expected market size of 0.4, the location of each of the probabilistic year 

five cash flows is indicated by a light grey bar. The height of the bar represents the cash 

flow’s likelihood. Table 33 walks through the uncertainty simulation. In year five there 

are six demand observations with likelihood 3.1%, 15.6%, 31.2%, 31.2%, 15.6%, and 

3.1%. Each demand observation is represented by a different market scale that 

corresponds to the spread of the binomial lattice at year five, assuming that 0.4 is the 

starting lattice value (instead of 1.0). These observations are 0.26, 0.31, 0.36, 0.43, 0.44, 

and 0.44. The last two values are constrained by the production capacity of the plant 

(110% of 0.4 = 0.44), given the assumption that demand will always equal production 

volume up to the capacity of the plant. These constrained demand observations are the 

analytical representation of the primary asymmetry which was used to support the 

hypothesis that composites should become more competitive under uncertainty.    
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Composite Closures vs. Steel Closures  

Mid-size Car, Year 5 Cash Flows 
at 0.4 mean Market Scale, 110% capacity, Baseline CAFE 

 no 
uncertainty 

with  
uncertainty 

  obs 1 obs 2 obs 3 obs 4 obs 5 obs 6 
Probability 100% 3.1% 15.6% 31.2% 31.2% 15.6% 3.1% 
Market Scale 0.40 0.26 0.31 0.36 0.43 0.44 0.44 
PV(composite)-
PV(steel) $0.05m $1.90m $1.19m $0.60m -$0.43m -$0.65m -$0.65m 

E[NPV ∆] 
$0.05m 

(composite 
preferred) 

$0.17m 
(composite  
preferred) 

Table 33  NPV calculation under uncertainty for 0.4 expected market size 
 
 As the table reports, after multiplying the demand observations with their 

associated probabilities, the expected NPV difference between composites and steel is 

slightly larger with uncertainty than without. ($0.17m vs. $0.05m) This indicates that 

composites are more competitive near this market size and will exhibit a crossover to 

steel at higher production volumes.  

 Although the effect is small and often muddled by opposing effects, this analysis 

confirms that when projects with similar capacities are compared, composites can be 

more competitive in an environment of demand uncertainty.   
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4.2 Alternative CAFE Scenarios 

 The next sections report the optimization results for scenarios that consider 

alternative CAFE policies: a 35 mpg standard and $5.50 penalty, a 35 mpg standard with 

a $15.00 penalty, and a 35 mpg standard with a $50.00 penalty. All of these analyses 

assume no demand uncertainty.  

 

4.2.1 35 mpg 

 As Table 34 indicates, raising CAFE to 35 mpg without changing the CAFE 

penalty induces the firm to use the small engine in the luxury car at all production 

volumes and appears to alter the firm’s materials strategy slightly (the firm is now 

choosing composites for the closure application in the mid-size car at 40% of the 

reference market size). On closer inspection, the crossovers for the closures in both the 

small and mid-size car have indeed shifted, making composites more competitive, but 

only the crossover for the body-in-white in the luxury car has moved (see Table 35 on the 

page following the fleet decisions chart).  

 Note that the firm still transitions to steel in the small and mid-size car at higher 

production volumes even as this strategy lowers its CAFE value and increases its CAFE 

penalties.  With respect to the firm’s total NPV, fleets at 20% and 40% of the reference 

market size are now unprofitable, compared to the baseline case in which only the 20% 

market size case lost money.  

 These results suggest that (1) increasing CAFE alone can improve the 

competitiveness of composites and (2) altering the engine is the CAFE-complying 
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technology strategy which causes the smallest NPV reduction for the simulated 

automaker.



optimal fleet 

No Demand Uncertainty 
35 mpg CAFE Standard, $5.50 CAFE Penalty 

      
percent of reference 

market size 0.2 0.4 0.6 0.8 1.0 

Small car      
Body-in-White composite steel steel steel steel 

Closures composite steel steel steel steel 
Engine 95 kW 95 kW 95 kW 95 kW 95 kW 

Capacity 110% 110% 110% 110% 110% 
Fuel Economy (mpg) 31.5 30.4 30.4 30.4 30.4 

Acceleration (0-60 sec) 8.4 9.1 9.1 9.1 9.1 
Expected Year 1 Sales 48,634 92,453 138,679 184,906 231,132 

      
Mid-size car      

Body-in-White composite steel steel steel steel 
Closures composite composite steel steel steel 

Engine 95 kW 95 kW 95 kW 95 kW 95 kW 
Capacity 110% 110% 110% 110% 110% 

Fuel Economy (mpg) 29.6 28.6 28.6 28.6 28.6 
Acceleration (0-60 sec) 9.7 10.6 10.6 10.6 10.6 
Expected Year 1 Sales 35,076 68,988 103,481 137,975 172,469 

      
Luxury car      

Body-in-White composite composite composite composite composite 
Closures composite composite composite composite composite 

Engine 95 kW 95 kW 95 kW 95 kW 95 kW 
Capacity 110% 110% 110% 110% 110% 

Fuel Economy (mpg) 27.8 27.8 27.8 27.8 27.8 
Acceleration (0-60 sec) 11.2 11.2 11.2 11.2 11.2 
Expected Year 1 Sales 5,494 10,989 16,483 21,978 27,472 

      
Fleet CAFE (mpg) 30.51 29.5 29.5 29.5 29.5 
PV(CAFE penalty) $83m $200m $300m $400m $500m 

Fleet E[NPV] -$0.7b -$0.1b $0.6b $1.3b $2.0b 
Table 34  Optimal fleet choice at 35 mpg CAFE and $5.50 CAFE penalty



 Cost Model  
Predicted 
Crossover 

NPV Optimization Model  
Predicted Crossover 

No Demand Uncertainty, 110% Capacity 
annual production 

volume  Small Car Mid-size Car Luxury Car 

Body 54,000    
27.5 mpg, $5.50 CAFE  ~54,000 ~54,000 ~90,000 

35 mpg, $5.50 CAFE  ~54,000 ~54,000 no crossover 
     

Closures  64,000    
27.5 mpg, $5.50 CAFE  ~77,000 ~67,000 no crossover 

35 mpg, $5.50 CAFE  ~90,000 ~80,000 no crossover 
Table 35  Crossover shifts under 35 mpg CAFE, $5.50 penalty 

 

 

4.2.1 35 mpg, $15.00 penalty 
 
 When the CAFE standard is increased to 35 mpg and the CAFE penalty is raised 

to $15.00, the firm continues to alter its materials strategy. The small engine is still used 

in the luxury car at all production volumes, but now the firm chooses composite closures 

at least up to 60% of the reference market size (Table 36). In fact, as Table 37 on the 

page following the fleet decisions shows, all crossovers for the body-in-white and closure 

set have shifted significantly. The NPV crossovers for the body-in-white have moved to 

69,000 APV for the small car, 64,000 APV for the mid-size car, and there is now no 

crossover predicted for the luxury car body. Furthermore, the NPV crossovers for the 

closure set have shifted to 128,000 APV for the small car and 110,000 APV for the mid-

size car.



optimal fleet 

No Demand Uncertainty 
35 mpg CAFE Standard, $15.00 CAFE Penalty 

      
percent of reference 

market size 0.2 0.4 0.6 0.8 1.0 

Small car      
Body-in-White composite steel steel steel steel 

Closures composite steel steel steel steel 
Engine 95 kW 95 kW 95 kW 95 kW 95 kW 

Capacity 110% 110% 110% 110% 110% 
Fuel Economy (mpg) 31.5 30.4 30.4 30.4 30.4 

Acceleration (0-60 sec) 8.4 9.1 9.1 9.1 9.1 
Expected Year 1 Sales 48,634 92,453 138,679 184,906 231,132 

      
Mid-size car      

Body-in-White composite steel steel steel steel 
Closures composite composite composite steel steel 

Engine 95 kW 95 kW 95 kW 95 kW 95 kW 
Capacity 110% 110% 110% 110% 110% 

Fuel Economy (mpg) 29.6 28.9 28.9 28.6 28.6 
Acceleration (0-60 sec) 9.7 10.3 10.3 10.6 10.6 
Expected Year 1 Sales 35,076 69,335 104,003 137,975 172,469 

      
Luxury car      

Body-in-White composite composite composite composite composite 
Closures composite composite composite composite composite 

Engine 95 kW 95 kW 95 kW 95 kW 95 kW 
Capacity 110% 110% 110% 110% 110% 

Fuel Economy (mpg) 27.8 27.8 27.8 27.8 27.8 
Acceleration (0-60 sec) 11.2 11.2 11.2 11.2 11.2 
Expected Year 1 Sales 5,494 10,989 16,483 21,978 27,472 

      
Fleet CAFE (mpg) 30.5 29.8 29.6 29.5 29.5 
PV(CAFE penalty) $220m $520m $800m $1,000m $1,400m 

Fleet E[NPV] -$0.8b -$0.4b $0.1b $0.6b $1.2b 
Table 36  Optimal fleet choice at 35 mpg CAFE and $15.00 CAFE penalty



 Cost Model  
Predicted 
Crossover 

NPV Optimization Model  
Predicted Crossover 

No Demand Uncertainty, 110% Capacity 
annual production 

volume  Small Car Mid-size Car Luxury Car 

Body 54,000    
27.5 mpg, $5.50 CAFE  ~54,000 ~54,000 ~90,000 
35 mpg, $15.00 CAFE  ~69,000 ~64,000 no crossover 

     
Closures  64,000    
27.5 mpg, $5.50 CAFE  ~77,000 ~67,000 no crossover 
35 mpg, $15.00 CAFE  ~128,000 ~110,000 no crossover 

Table 37  Crossover shifts under 35 mpg CAFE, $15.00 penalty 
 
 
 

4.2.1 35 mpg, $50.00 penalty 
 
 Under the most aggressive CAFE policy, the firm chooses composite bodies-in-

white up to 126,000 APV for the small and mid-size car and uses composite closures for 

all vehicles at all production volumes. However, note that all fleets are significantly 

unprofitable. Raising the CAFE penalty from $15.00 per 0.1 mpg infraction per car to 

$50.00 per 0.1 mpg infraction per car (an increase of more than 300%), reduced the 

expected NPV of each fleet by at least 300% as well



optimal fleet 

No Demand Uncertainty 
35 mpg CAFE Standard, $50.00 CAFE Penalty 

      
percent of reference 

market size 0.2 0.4 0.6 0.8 1.0 

Small car      
Body-in-White composite composite steel steel steel 

Closures composite composite composite composite composite 
Engine 95 kW 95 kW 95 kW 95 kW 95 kW 

Capacity 110% 110% 110% 110% 110% 
Fuel Economy (mpg) 31.5 30.4 30.8 30.8 30.8 

Acceleration (0-60 sec) 8.4 9.1 8.9 8.9 8.9 
Expected Year 1 Sales 48,634 97,276 141,297 188,396 235,495 

      
Mid-size car      

Body-in-White composite composite composite steel steel 
Closures composite composite composite composite composite 

Engine 95 kW 95 kW 95 kW 95 kW 95 kW 
Capacity 110% 110% 110% 110% 110% 

Fuel Economy (mpg) 29.6 29.6 29.6 28.9 28.9 
Acceleration (0-60 sec) 9.7 9.7 9.7 10.3 10.3 
Expected Year 1 Sales 35,076 70,152 105,228 138,670 173,338 

      
Luxury car      

Body-in-White composite composite composite composite composite 
Closures composite composite composite composite composite 

Engine 95 kW 95 kW 95 kW 95 kW 95 kW 
Capacity 110% 110% 110% 110% 110% 

Fuel Economy (mpg) 27.8 27.8 27.8 27.8 27.8 
Acceleration (0-60 sec) 11.2 11.2 11.2 11.2 11.2 
Expected Year 1 Sales 5,494 10,989 16,483 21,978 27,472 

      
Fleet CAFE (mpg) 30.5 30.5 30.1 29.8 29.5 
PV(CAFE penalty) $800m $1,500m $2,400m $3,400m $4,300m 

Fleet E[NPV] -$1.3b -$1.5b -$1.7b -$1.8b -$1.9b 
Table 38 Optimal fleet choice at 35 mpg CAFE and $50.00 CAFE penalty 



 Cost Model  
Predicted 
Crossover 

NPV Optimization Model  
Predicted Crossover 

No Demand Uncertainty, 110% Capacity 
annual production 

volume  Small Car Mid-size Car Luxury Car 

Body 54,000    
27.5 mpg, $5.50 CAFE  ~54,000 ~54,000 ~90,000 
35 mpg, $50.00 CAFE  ~126,000 ~126,000 no crossover 

     
Closures  64,000    
27.5 mpg, $5.50 CAFE  ~77,000 ~67,000 no crossover 
35 mpg, $50.00 CAFE  no crossover no crossover no crossover 

Table 39 Crossover shifts under 35 mpg CAFE, $50.00 penalty



4.3 Summary of Competitive Crossovers 

 The following table summarizes the competitive NPV crossover predicted by the 

optimization model under the primary market demand and policy scenarios studied. This 

table provides a useful reference, but recall that the cost-competitive crossover is derived 

from an analysis at 100% capacity while the reported results are at either 110% or 125% 

capacity, which have different crossover dynamics.  

 Cost Model  
Predicted 
Crossover 

NPV Optimization Model  
Predicted Crossover 

 
annual production volume  Small 

Car 
Mid-size 

Car 
Luxury 

Car 
Body  ~54,000    
Baseline CAFE No Uncertainty  ~54,000 ~54,000 ~90,000 
 With Uncertainty  ~54,000 ~54,000 ~93,000 
     
Alternative CAFE 35 mpg, $5.50  ~54,000 ~54,000 none 
 35 mpg,$15.00  ~69,000 ~64,000 none 
 35 mpg, $50.00  ~126,000 ~126,000 none 
     
Closures  ~64,000    
Baseline CAFE No Uncertainty  ~77,000 ~67,000 none 
 With Uncertainty  ~80,000 ~66,000 none 
     
Alternative CAFE 35 mpg, $5.50  ~90,000 ~80,000 none 
 35 mpg,$15.00  ~128,000 ~110,000 none 
 35 mpg, $50.00  none none none 

Table 40  Summary of competitive crossovers for major scenarios 
 
 
 
 In general, the crossover results reported in Table 40 indicate that the studied 

policy scenarios have a much greater impact on the competitiveness of composites 

relative to steel, compared to the impact of demand uncertainty.



Chapter 5: Conclusions 

5.1 Thesis Summary 

  This work was motivated by two trends in the market for and regulation of 

U.S. passenger vehicles which might foreshadow a shift in the competitiveness of 

lightweight alternative materials relative to incumbent steels in automotive applications. 

First, the study hypothesized that consumers’ increasing demand for fuel efficient 

vehicles, together with the federal government’s recent action to update new car CAFE 

standards, may advantage lightweight materials because these actions increase the value 

of fuel economy improvements that can be realized by vehicle lightweighting. Second, 

the study hypothesized that the volatile nature of market demand and the unsettled future 

of further fuel economy policy creates an environment favorable to certain classes of 

lightweight materials, such as composite polymers, which entail production processes 

that are less capital-intense than typical high investment steel production. This argument 

is based on the conjecture that rising and falling demand yield asymmetric effects given 

plant capacity constraints. While the high fixed cost, low variable cost characteristics of 

steel parts production affords steel part manufacturing firms economies of scale that 

improve their competitiveness relative to composite part manufacturing firms when 

demand rises, the benefit is limited by plant capacity. When demand falls however, the 

higher investments that steel production entails leaves steel part manufacturing firms 

exposed to large downside losses that are only limited by the size of the initial 

investment.   
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 The present study tested these hypotheses by first developing a novel 

methodology to evaluate materials selection and engine technology decisions on the basis 

of their contribution to the net present value of vehicle projects, and then by applying this 

methodology to a relevant case study. The modeling methodology comprises a 

framework of five integrated models: (1) a performance model that predicts vehicle fuel 

economy and acceleration given total vehicle mass, engine power, and transmission 

tuning, (2) a market model that predicts the expected annual sales for the first year of 

production given fuel economy and acceleration, (3) a cost model that maps technology 

decisions and sales levels to fixed and variable costs, (4) a demand uncertainty model that 

projects a probabilistic distribution of demand/sales levels for future years, and (5) a 

regulatory model that determines compliance with or assesses penalties due to violation 

of a simplified CAFE policy. The integrated NPV model simulates all possible vehicle 

fleet combinations given a set of technology decisions and finds the optimal decisions by 

finding the vehicle fleet for which NPV is maximized.  

 The case study was designed to apply this methodology to a set of technology and 

production decisions that illuminate the competitive dynamics between incumbent steel 

and lightweight composite materials in two vehicle subsystems and three different 

vehicle markets. In total, four decisions were formulated: materials choice for body 

(either stamped steel or SRIM-type composite), materials choice for closure set (either 

stamped steel or a mixed design of SMC and RIM-type composite), engine (either 95 kW 

or 155 kW), and production capacity (either 110% or 125% of expected demand in the 

first year). These decisions were exercised for each car in a three-car fleet: a small car, a 

mid-size car, and a luxury car. Optimization simulations were performed in several 
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scenarios: under a CAFE policy mimicking current CAFE with and without demand 

uncertainty, and then under three more stringent CAFE policies in the absence of demand 

uncertainty.  

 Several data implementation strategies were employed to carry out the case study. 

The performance model is based on the results of ADVISOR simulations of the default 

small car that is natively programmed in that software. Several ADVISOR fuel economy 

and acceleration tests were run across a range of values for each technical parameter that 

was studied (total vehicle mass, engine power, and final drive ratio), and the results were 

then transformed to analytical relationships between technical parameters and 

performance metrics (fuel economy and acceleration) by means of statistical regression.  

 The market model is based on the work of Catarina Bjelkengren, a contemporary 

MIT colleague. Bjelkengren studied current market survey data available commercially 

from Market Insight to derive relationships between changes in fuel economy, 

acceleration, and price, with predicted changes in market share for three reference cars (a 

small, mid-size, and luxury car). Given a selling price, these relationships were used to 

map the vehicle performance of a modeled car to the market share it is expected to garner 

in the first year of production.  

 The cost model primarily derives from technical cost models of materials 

production processes that have been previously developed at the Materials Systems 

Laboratory at MIT. However, instead of directly embedding these process based cost 

models into the NPV optimization model, the results of the more detailed PBCMs were 

used to formulate simple parametric relationships between production capacity and fixed 

costs, and between production volume and variable costs. Engine costs were determined 
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from a relationship between engine power and cost found by Michalek. Additional costs 

for the remaining vehicle segments were estimated with advice from industry experts.    

 The demand uncertainty model was constructed using a recombining binomial 

lattice, similar to the approach used to model asset price uncertainty in financial options. 

The implemented binomial lattice model assumes that demand starts at an expected value 

in year zero and can move up by u percent or down by –u percent in the next year at some 

likelihood p and 1-p, respectively. The u and p values were calibrated by observing 

annual U.S. sales trends for several vehicles in the compact and subcompact car classes 

(by EPA definition). Annual sales data for each car were normalized by its sales level in 

the first full year of production and the resulting spread of sales over the next five years 

for all cars was matched to the outcome of a binomial lattice model with u = 0.08 and p = 

0.5. 

  The regulatory model is a simplified version of U.S. CAFE policy. Firm CAFE is 

calculated by determining the sales-weighted fuel economy for the entire fleet. If the 

firm’s CAFE is lower than the specified CAFE standard, a penalty is assessed for every 

0.1 mpg infraction per car sold. 

 The principal findings of this research follow.   

 

5.2 Principal Findings  
 

 1. This thesis successfully developed a method to evaluate automotive 

materials selection decisions considering production cost and vehicle performance-

derived benefits, using established technical cost modeling techniques and readily 
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available market data. The current method improves on other selection methods 

that ignore the benefits of designing products with lightweight materials and, in 

addition, it incorporates the capability to study the effects of demand uncertainty 

and alternative regulatory policy as they affect materials selection choices.  

 The underlying method treats materials selection decisions like conventional 

business decisions. Assuming that competing designs in alternative materials are 

functionally sufficient (that is, that each design meets basic functional requirements), a 

firm’s optimal design choice is the material/design which maximizes NPV.  

 The NPV calculation can be decomposed into the investments and operating costs 

required for manufacturing parts from a certain material, and the revenue or value 

streams that the firm expects based on the final performance of the product. As this 

decomposition reveals, ignoring the value differences between product designs in 

alternative materials obscures the true competitiveness between materials and limits the 

ability of a firm to understand its best product strategy.  

 This limitation is present in several prior analyses of automotive materials 

competitiveness (Kang 1998; Kelkar, Roth et al. 2001; Fuchs, Field et al. 2008), which 

only report the cost-competitive character of lightweight materials, not their full market 

competitiveness considering the performance gains achieved through mass reduction. 

Furthermore, analyses which attempt to place a value on vehicle lightweighting by 

considering only the benefit of discounted fuel savings ignore both the value of increased 

sales due to higher demand and the value of acceleration improvements. This work 

corrects these limitations because it considers the market value of fuel economy and 
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acceleration improvements by directly incorporating performance-market relationships 

derived from consumer responses to detailed marketing surveys. 

 The current method is not far removed from Field’s materials selection method, 

which proposes employing utility functions to determine the value of alternative 

materials designs (Field 1985). However, the present technique views value in light of 

consumer’s willingness to pay for product attributes that materials choice affects, while 

Field’s method views value in light of a material’s ability to abide a diverse set of design 

factors which the product engineer must confront. Both methods suffer from an imperfect 

information problem: engineers understand the technical tradeoffs of alternative designs 

but perhaps not the market tradeoffs of product attributes—while consumers understand 

how they value alternative product attributes in the market but are mostly ignorant to the 

underlying technical designs.    

 In Field’s method, this problem is manifested in the utility function itself, which 

is constructed from a survey of the engineer-designer’s preferences for materials 

characteristics. Inevitably, the engineer’s utility will imperfectly reflect consumer’s 

preferences for product attributes that materials choice affects. In the current method, the 

imperfect information problem is manifested in the definition of the alternative designs 

which have been tested by their ability to provide consumer value. Except for the stated 

differences in acceleration and fuel economy, each design has been assumed to be 

equivalent from a technical perspective (and the consumer’s perspective), although in fact 

some design alternatives may provide additional technical advantages which consumers 

are ignorant to or unable to value.      
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 The current method thus doesn’t solve the information problem outright, but it 

does present a method for incorporating consumers’ utility (by means of their willingness 

to pay) directly into the materials selection method. While such market data may not be 

available for all products that require a materials selection process, this thesis has 

demonstrated how readily available market data can be applied to the automotive 

materials selection case. 

 Moreover, by integrating a demand uncertainty model and a regulation policy 

model, the current methodology allows researchers to investigate how volatile sales 

markets and varying fuel economy policy impinge on optimal automotive materials 

choices, a practical and novel advancement.  

 

 2. The value of acceleration improvements may be greater than the value of 

fuel economy improvements due to a vehicle mass reduction achieved by using 

lightweight materials.  

 Expanding on the engineering rule of thumb that a 10% vehicle mass reduction 

yields a 5% fuel economy improvement, this work suggests a corollary rule: a 10% 

vehicle mass reduction also yields a 10% acceleration improvement (in seconds of 0-60 

mph time). Applying these rules to the reference small car studied in this thesis shows 

that a 10% mass reduction improves fuel economy from 24.6 mpg to 25.8 mpg and 

improves acceleration time from 9.6 seconds to 8.6 seconds. Using Bjelkengren’s value 

curves presented in Chapter Four, the 5% fuel economy increase represents 

approximately $100 in added value, while the 10% acceleration improvement is worth 

approximately $500.  
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 This observation further highlights the importance of considering all 

lightweighting benefits when analyzing an automotive materials selection problem. 

Moreover, it is interesting to note that this result holds for all three cars studied, including 

the economy small car. This suggests that the dominant business case for materials-

enabled vehicle lightweighting that can be made currently, regardless of the type of 

vehicle considered, centers on acceleration improvements, not fuel economy 

improvements.  

 

 3. The marginal benefits of vehicle lightweighting depend on the remaining 

set of vehicle technology decisions. The value figures referenced above are true for 

performance changes from the reference car’s performance, but they may be greater or 

smaller in magnitude if the reference performance shifts, given that the market often does 

not value performance changes linearly.  

 For example, if the vehicle in which a lightweight materials application is being 

considered is already equipped with a powerful engine that enables a fast acceleration 

time, the marginal benefits of increasing the acceleration time by materials lightweighting 

may be small, depending on the specific car market being considered. As Bjelkengren’s 

value curves indicate, the markets for the small and mid-size car markets studied in this 

work are indifferent to acceleration improvements beyond 20% from the reference value. 

This result underscores the need to evaluate materials selection decisions in light of other 

vehicle technology decisions that influence salient performance measures such as fuel 

economy and acceleration.  
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 4. When the value of acceleration and fuel economy improvements are 

included in a comparison of incumbent steel and lightweight composites across a 

range of production volumes, the competitive position of composites improves from 

the cost-competitive production volume to a higher one. The magnitude of this 

crossover shift depends on two factors: (1) consumer demand for acceleration and 

performance in the specific car market being studied, and (2) the rate at which 

composites become relatively more costly than steel as production volume increases.  

 With respect to the body-in-white application in the small and mid-size car, the 

competitive crossover considering total NPV did not shift significantly from the cost-

competitive crossover at 54,000 APV, but in the luxury car this crossover shifted to 

approximately 90,000 APV. The notable discrepancy is due to the difference in the ways 

that each car market values performance improvements. While the small car and mid-size 

car market grow indifferent to performance improvements beyond a certain degree (their 

value curves flatten out), the luxury car market continues to value performance 

improvements for the entire range of acceleration and fuel economy studied.  

 Furthermore, the lack of a crossover shift for the body in the small and mid-size 

car is primarily a result of the marginal benefits observation described above. As most of 

the modeled mid-size car combinations had acceleration times that were much slower and 

fuel economy values that were much greater than the reference car, the market was 

indifferent to marginal performance differences between the modeled steel and composite 

mid-size car variations. However, when the mid-size car reference acceleration was 

increased by two seconds (to locate it closer to the range of acceleration values of the 

modeled mid-size car combinations), the body-in-white NPV crossover shifted from 
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approximately 54,000 APV to approximately 58,000 APV.  This shift occurred because 

the mid-size car market is indifferent to marginal acceleration changes that are more than 

two seconds from the reference value. (A 2.5 second acceleration improvement from 

reference is valued as much as a 2 second acceleration improvement.) Thus when the 

reference acceleration is 2 seconds closer to the acceleration of the modeled mid-size cars 

the marginal acceleration improvement of using composites results in a notable marginal 

benefit that is reflected in the shifted crossover point.  

 With respect to the closure set application, the NPV crossover shifted from the 

cost-competitive crossover of approximately 64,000 APV to approximately 77,000 APV 

in the small car, to approximately 67,000 APV in the mid-size car, and there was no 

crossover predicted for the luxury car (composites always preferred). When the reference 

mid-size car acceleration value was increased by two seconds, the closure set crossover 

shifted even farther, to approximately 93,000 APV.  

 These more pronounced crossover shifts observed for the closure set applications, 

relative to the body-in-white, are a consequence of the slower rate at which composite 

closures become more costly than steel closures. While the composite closure suffers just 

a $50 cost disadvantage per unit at 20,000 APV beyond the cost-competitive volume 

crossover, the composite-body-in-white is at a $500 disadvantage per unit by that same 

point 20,000 APV past its cost-competitive crossover.  As the composite closures suffer a 

much smaller cost penalty for a given production volume step, they are competitive 

across a greater range of production volumes than the composite body-in-white 

application.       

  



 178 

 5.  Demand uncertainty slightly improves the competitive position of 

composites relative to steel in automotive applications when projects with the same 

production capacity are compared and plant capacity is fixed at 110% of expected 

annual sales. Under these conditions, the volatility of annual sales levels observed in 

some segments of the U.S. car market is large enough to generate asymmetric returns to 

an automaker after one year. For the closure set application that was studied, the expected 

returns favor composites and shift the NPV competitive crossover approximately 1,500 

APV for mid-size car and 3,000 APV for the small car.  

 This result is narrowly constructed because much of the present uncertainty 

analysis was confounded by difficulties related to framing problems. As the problem was 

solved by optimization and two possible production volumes were available, the optimal 

choice sometimes transitioned from 110% of expected capacity to 125% of expected 

capacity when uncertainty was considered. This muddied the examination of uncertainty 

effects because it was discovered that crossovers may shift in either direction (to higher 

or lower production volumes) when production capacity increases. Yet in cases where the 

capacity did not change after optimization (as for the small car closure set), or a separate 

analysis with only one capacity option was studied (as for the mid-size car closure set), 

the uncertainty effect could be isolated and this result reported.      

 With respect to the modeling of automotive demand uncertainty, the binomial 

lattice model well approximated the observed sales volatility.  The output of the 

calibrated binomial lattice indicates that if the expected annual sales for a vehicle in the 

compact and subcompact U.S. car market were modeled as a random variable, it would 
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be characterized by an overall growth rate of approximately 0% per year and a standard 

deviation of approximately 18% after five years.  

 .    

 6. Over all scenarios studied in this thesis, the consideration of more 

stringent fuel economy policies improved the competitive position of composites to a 

greater degree than did the consideration of demand uncertainty.   

 This result suggests that the transition from the current 27.5 mpg CAFE standard 

to the updated 35 mpg CAFE standard will have a greater impact on the competitiveness 

of composites in the U.S. car market than any effects of demand uncertainty, assuming 

that the magnitude of demand uncertainty is and remains similar to the magnitude of 

demand uncertainty modeled in this work. However, it is plausible that the market will 

become even more volatile as the transition to a more fuel-efficient fleet intensifies.   

 

 7. The case study presented in this thesis can improve fuel economy 

regulators’ understanding of the costs and benefits of vehicle lightweighting using 

composite materials, from an automaker’s perspective. Moreover, the results of the 

alternative CAFE policy scenarios that were simulated characterize the relative 

industry impact that raising the standard from 27.5 mpg to 35 mpg might have 

versus the impact of penalty increases from $5.50 to $15.00 to $50.00 per 0.1 mpg 

infraction per car sold. 

 The last major government-sponsored work to consider the subject of lightweight 

materials and their potential to meet more stringent fuel economy requirements presented 



 180 

the subject in broad terms that simplified the production economics and generalized the 

benefits associated with vehicle lightweighting. (National Academy of Sciences 2002)  

 The study presented here, by contrast, illustrates the production cost 

characteristics of aggressive lightweighting strategies, their resultant performance 

improvements, and the attendant value added to the automaker. The results indicate that 

lightweight composites may be more competitive in the U.S. market than is implied by 

their low market penetration, yet much of this competitiveness derives from the 

acceleration benefit that lightweighting affords, not its fuel economy benefit. In fact, the 

possibility of using costless transmission tuning to favor acceleration instead of fuel 

economy leaves open the possibility that automakers will employ lightweight composites 

to achieve acceleration gains without fuel economy gains. This issue has been identified 

as an interesting direction for future work.  

 The case study has also demonstrated that CAFE penalty increases to $15.00 and 

$50.00 per 0.1 mpg violation per car can induce dramatic shifts in a firm’s technology 

strategy, but at potentially enormous cost. With the CAFE standard at 35 mpg, an 

increase from $5.50 to $15.00 (approximately 275%), increased the NPV crossover by 

approximately 10,000 APV for the composite body-in-white and 30,000 APV for the 

composite closure set, although assessed CAFE penalties also rose by about 275%—from 

$500 million to $1.4 billion at the reference market size. Under the most aggressive 

penalty increase, to $50.00 (a 333% increase over the $15.00 penalty), composites totally 

dominate steel at all production volumes in the closure set application and luxury body—

and shift the crossover to 126,000 APV for the small car and mid-size car body. 
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However, this dramatic result is paired with a $4.3 billion penalty at the reference market 

size and unprofitable (negative NPV) fleets at all reference sizes.  

 

5.3 Directions for Future Work 

 Several alternative analyses performed with the methodology developed in this 

thesis might advance the knowledge gained from the current case study. Foremost, the 

impact of transmission tuning should be investigated to understand whether a firm would 

ever tune a vehicle to favor fuel economy when the market values acceleration more 

highly. Other interesting cases to study include the addition of more materials options 

(more classes of materials and smaller subsystem applications) and more engine options 

such as unconventional power sources like hybrid and plug-in hybrid platforms. Other 

scenarios that could be analyzed include a study of demand uncertainty and alternative 

CAFE policy effects in tandem (in light of the fact that they were investigated separately 

in this thesis), and the impact of different types of fuel economy policies such CO2 

emissions regulation or fuel taxes.  

 The structure and assumptions of the methodology itself should also be tested 

further. For example, the current work assumed that the volatility implied by the market 

for compact and subcompact cars is equivalent to the volatility in the market for mid-size 

and luxury cars, though this may not be accurate. In addition, the NPV calculation 

method considered tax but ignored the effect of depreciation, which lowers taxes for 

projects that have higher capital investments.    

 Finally, some of the most significant practical issues not addressed by this work 

pertain to the barriers that may still prevent an automaker from adopting the materials 
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strategies implied by the results of the case study. While the case study reports that 

composite bodies-in-white and composite closure sets are competitive with steel in 

luxury cars at typical sales volumes observed in the U.S. market, only a fraction of luxury 

cars sold in the U.S. are actually designed with structural composites. Other work by this 

author and several collaborators has suggested that some of the dominant barriers to the 

use of lightweight automotive materials include firm inertia and supply chain inadequacy 

(Cirincione, Roth et al. 2007), though this research topic is not complete. As automakers 

and materials suppliers confront the results of this thesis—not to mention the ever-

changing market that initially motivated the work—it will be interesting to see if, when, 

and how the automotive materials paradigm shifts.         
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