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Abstract 
 
 In light of volatile fuel prices and tightening emissions regulations, automobile 
manufacturers have been increasingly considering the use of light-weight magnesium in 
their efforts to improve fuel economy. While mainly used in minor components now, 
greater weight savings lie in its replacement of heavier structural components now made 
of extruded aluminum and stamped steel. However, as a material with generally lower 
mechanical properties on a volumetric basis and higher unit materials cost, magnesium 
introduces a strength-weight tradeoff with non-obvious total cost implications. 
Accordingly, manufacturers could greatly benefit from a method of systematically 
studying this weight-strength relationship in cost terms for extruded magnesium beams in 
a variety of loading scenarios. In this paper, we describe the development of an interface 
within a Process Based Cost Model of the extrusion process for quantifying these 
relationships on user defined parts. This interface consists of Visual Basic functions 
which dynamically compute dimensions of hollow Mg or Al extruded tubes necessary to 
achieve some strength constraint, input them into the cost model, and return the results. 
This capability was demonstrated on a representative system - a 1 m long, 70 or 75 mm 
wide,  6 or 8 mm thick Mg or Al tube – for three distinct loading conditions - axial 
loading as quantified by Euler buckling load, deflection from center load, and deflection 
from end load. Results show that in non-package constrained scenarios, cost and weight 
savings can be achieved by switching from Al to a larger diameter Mg extrusion of 
equivalent strength; however, when diameter is constrained, it is neither cost nor weight-
effective unless some geometric, processing, or strength constraint is somewhat relaxed. 
In general, switching to Mg is favorable when specific strength rather than absolute 
strength is more important. While intrinsic characteristics of the model limit practical 
usefulness in some cases, it is nevertheless very helpful in studying relative differences 
between the strength, weight, and cost of extruded Mg and Al beams. 
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1 Introduction  
 
     1.1 Motivation 

As the lightest of all structural metals, magnesium has emerged in recent years as a 

promising strategy for reducing the weight of automobiles. In light of recently volatile 

fuel prices and increased government regulations of greenhouse gas emissions, vehicle 

light weighting is increasingly being seen as an effective strategy to improving fuel 

efficiency [1,2,3,4]. European automakers for example have collectively promised to 

reduce CO2 emissions from 170 g/km down to 120 g/km by 2012. Under the accepted 

assumption of “100 kg less weight of car body reducing fleet fuel consumption by 0.3-0.5 

1/100 km,” this will require a decrease in total car weight of ~30% [2].  

 

In the US, there have been steady efforts in this regard beginning with the Energy Policy 

and Conservation Act of 1975 which established nationwide standards for automotive 

fuel efficiency, known widely by their acronym CAFE [1]. Since then, standards have 

been raised several times, and corporations have invested heavily in R&D to avoid 

penalties for non-compliance. However, a combination of frozen standards and lower fuel 

prices lead to stagnation in fuel efficiency gains in the 1990s [1]. It has been only in the 

last few years, in light of a weakening American auto industry, foreign innovation, and 

greater socio-political fear of global warming, that fuel efficiency gains have reemerged 

as a top priority among American automakers. In their view, light weighting is a 

promising first step in moving toward the new generation of ‘green’ cars.  

 

In industry, light weighting is largely thought of as a means to achieve performance 

improvements, not limited to, but including fuel economy. A general rule of thumb, the 

10-5 rule, states that a 10% reduction in mass will result in a 5% increase in fuel 

economy [1].  To achieve these higher performing, more fuel-efficient designs, American 

auto makers have increased their use of light-weighting materials, as evidenced by a 50% 

increase in the use of polymer composites and a 150% increase in the use of aluminum 

since 1977 [1]. However, these statistics primarily reflect increased use in non-structural 

applications. Much greater weight savings can be achieved by switching to magnesium 
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and its alloys for the heavier components of vehicle body structure and chassis. While 

there has been some penetration of these technologies into mainstream vehicle body 

structures, the Audi Space Frame ASF being a prime example, the vast majority of 

vehicle production has made little use of non-ferrous lightweight structural materials in 

the body structure, especially in the US [2]. Further, magnesium’s exceptional specific 

strength and manufacturing properties can translate into significant mass and 

manufacturing cost savings. Several of the properties which make magnesium attractive 

in automotive applications are provided in Table 1.  

 

Table 1: Properties of Magnesium Attractive for Automotive Applications [1] 

Property Engineering Benefit 
Low Density 2/3 that of Al and 1/4 of steel, enables weight reduction 

and improved fuel economy 
High Ductility when Heated Higher than Al, thus lower extrusion pressures needed 

which means longer tool life 
High Specific Strength Highest strength/weight of structural metals, esp. as alloy 
Part Consolidation Like Al, can replace multiple steel stampings with single 

casting, or complex shapes can be formed through 
bendings 

Good Damping Properties Part consolidation enabled by Mg (or Al) lead to superior 
NVH in body, steering, and suspension to steel 

 

Despite these properties, magnesium has not been widely used in recent decades due to 

cost, technical, and compatibility limitations, and as a result, the supply base is small and 

non-competitive, itself leading to higher price volatility [1]. As a result, the goals of 

weight reduction and cost reduction have typically run counter to each other. While 

magnesium is already widely used in small casting applications such as instrument 

panels, steering wheels, and steering column supports, these issues have deterred auto 

makers away from using it more extensively in heavier body, powertrain, and chassis 

applications. Indeed, while magnesium usage increased eight fold between 1977 and 

2000, it still comprises less than 0.3% (6 lbs) on average of the total mass of a car [5].  

 

However, stricter fuel economy standards, higher fuel costs, and changing public 

attitudes have increased demand for magnesium parts in several industries. This has 

catalyzed technical improvements in the refining process, namely the carbothermic 
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‘pidgeon’ process, helping to replace the capital intensive electrolytic processes which 

have long lead times for introducing new capacity and require large capital investments 

[17]. Such improvements are driving the current expansion of the magnesium supply 

industry [1]. As a result, magnesium prices and associated volatility are likely to improve 

to some degree in the coming decades, thereby improving the economic feasibility of 

using magnesium and its alloys to replace extruded steel and aluminum parts. Examples 

include steering column supports, cross car structural members, body pillars, components 

of the engine cradle, suspension links, and even the entire body structure through the use 

of spaceframe concepts [1,4]. 

 

Figure 1. General view of a 9-MN (1000-ton) hydraulic-extrusion press 

 

  

Increased use of magnesium in structural applications now only requires an improved 

materials cost situation enabled by advances in primary production, but also needs 

advances in forming technologies for creating final products.  Casting has long been the 

main processing technique, accounting for 95% of magnesium use [4].  Advances in 

extrusion and even warm forming or stamping offer new opportunities to use magnesium. 

However, the introduction of these technologies not only requires technical advances, but 

also new, potentially large capital investments.  Indeed, a standard 2000 US Ton 

aluminum extruder complete with foundation work, rigging equipment, and handling 

system can easily exceed $4 million, and equipment capable of producing magnesium 

components can cost much more due to the need for more specialized equipment for 
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which there are often few suppliers [6]. Hence, for manufacturers to switch to Mg, the 

weight savings and improved manufacturability must justify the significant upfront 

investments and higher unit materials cost. The current economic and political climate is 

providing an impetus for such cost vs. performance analysis and is driving an expansion 

in the use of extruded magnesium for structural members in a variety of automotive 

applications.  

  

The prospect of switching to magnesium extrusion introduces a whole host of tradeoffs. 

In addition to the cost-weight issue, there also exist important structural and strength 

differences as well. While having a high strength to weight ratio, magnesium, on a 

constant volume basis, is weaker than aluminum or steel due to lower Young’s modulus 

and yield strength. Depending on the part geometry and loading conditions, this has 

implications on macroscale deflections and deformations experienced. If parts are 

constrained geometrically, a reasonable assumption for automotive parts, then this is an 

important factor to consider.   

 

Moreover, depending on specific processing conditions, the microstructure of magnesium 

(grain size, defect density, etc) can vary substantially with respect to aluminum, so the 

performance in tension or compression under various applied loads will differ 

substantially [3]. However, these differences in microstructure lead to Mg’s higher 

ductility, which translates into the manufacturing properties which allow it to be formed 

into shapes that consolidate many parts into a single component in the case of casting and 

bent easier into more complex shapes in the case of extrusion. Further, these micro and 

macro structural differences are well understood in literature and optimal processing 

conditions (extrusion temperature and speed) can be reasonably deduced. Table 2 below 

offers a comparison of material properties of aluminum and magnesium.  

 
Table 2: Comparison of Properties between Aluminum and Magnesium  

Property Aluminum AA6060 Magnesium AZ31F 
Young’s Modulus E [GPa] 70 45 
Tensile strength [MPa] 210 207 
Density [kg/m³] 2700 1800 
Melting Temperature [ºC] 660 650 
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    1.2 Problem Statement and Goals  

Clearly, these structural and cost differences introduce non-trivial optimization problems 

when considering using magnesium in place of aluminum. If we assume that engineers 

face real-life strength and safety constraints in various loading conditions, then a simple 

question to ask is: what dimensions are required in magnesium to achieve same structural 

integrity as aluminum, and at what cost?  This question is a good starting point for 

addressing the need to systematically model this strength-cost-weight tradeoff and 

optimize corresponding production decisions. More specifically, answering this simple 

question works to address a greater desire to define the real-life applications in which 

magnesium extruded parts are preferable to aluminum in terms of cost and performance. 

 

This goal can be accomplished through Process Based Cost Modeling (PBCM) of the 

extrusion process combined with the development of a model for performing various 

strength calculations. To this end, I utilized and improved upon the Material Systems 

Laboratory’s (MSL) existing Extrusion cost model, a Microsoft Excel model which 

breaks down the extrusion process into all of its constitutive steps and computes the cost 

for extruding a user-defined part. However, in its previous form, the cost model had no 

capability for understanding the strength characteristics of the input parts. This therefore 

necessitated the development of a suite of Visual Basic functions dealing with strength 

calculations capable of interfacing with the cost model.  

 

In this paper, I describe the various tools developed in order to simultaneously quantify 

the strength and cost of an extruded part, as defined by three common real-life loading 

conditions. I then demonstrate the capabilities of this method via a case study on a simple 

yet applicable example system. Clearly, the relevance of the resulting analysis depends 

highly on the quality of the inputs; however, even if absolute values are considered 

subjectively, this framework provides for systematic and convincing comparisons of 

aluminum and magnesium extrusion on a relative basis. Prior to describing this case 

study, an overview of the extrusion process, theory of cost modeling within the context of 

the MSL extrusion model, and structural mechanics relevant to three chosen loading 

conditions is useful. 
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2 Theory and Methodology 

     2.1 Description of Extrusion  

In direct extrusion, a metal billet (usually round) is placed in a chamber and forced by a 

ram under high pressure through a die of desired cross section, a process analogous to 

squeezing toothpaste from a tube [8].  This batch or semi-continuous process is illustrated 

below in Figure 2. There also exist other variants of this process, namely indirect 

extrusion, where the die moves toward the billet, and hydrostatic extrusion, which utilizes 

a fluid to transfer pressure between the ram and billet. Direct extrusion is the most widely 

used variant however, and will thus be the focus of this discussion. 

 

Figure 2: Direct Extrusion [9] 

 

  

 

Advantages of direct extrusion include the variety of shapes possible, enhanced grain 

structure in hot and cold extrusion, and the low amount of wasted material [8]. However, 

a limitation is that the extruded part must have a uniform cross section throughout. 

Hence, this process is an ideal method of manufacturing long structural members which 

can be cut to desired length. With respect to automotives, many of the solid and hollow 

rod-like members present in the spaceframe, suspension links, and other chassis 

components are commonly manufactured using direct extrusion.  

 

Metals such as aluminum and magnesium are commonly heated to temperatures above 

their recrystallization temperature prior to extrusion to increase ductility and thus 

decrease the force required to plastically deform the metal [9]. This plastic shearing 
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occurs at the interface between the billet and the container wall as the applied ram 

pressure overcomes the material’s average flow stress plus the frictional force present at 

the interface [8]. However, at these temperatures, oxides can form on the surface which 

aggravate the friction problem and introduce defects into the metal. For this reason, a 

dummy block of slightly smaller diameter than the billet is placed in front of the ram, so 

that as the metal deforms, a narrow ring of mostly oxide is left. Thus, as metal is forced is 

funneled into a smaller cross section, there is a lagging flow of metal at the interface 

approaching the back of the billet. This combined with the material left inside the die 

forms an unusable butt at the end of the billet, characterized by a sharp increase in ram 

pressure near the end of the ram stroke, as shown below in Figure 3. 

 

 

 

 

 

The above figure plots ram pressure as a function of increasing ram stoke, or 

equivalently, decreasing remaining billet length. The initial increase in pressure is 

necessary to reach the material flow stress plus the initial frictional force; however, once 

the deformation begins, this pressure reduces due to the shrinking contact area between 

the billet and container walls. Hence the pressure falls until the very end of the extrusion 

when the butt begins forming. Hollow tubular sections are possible by attaching a 

mandrel to the dummy block, as shown in Figure 4 above. 

 

Figure 4: Mandrel used to extrude 
hollow sections [8] 

Figure 3: Ram pressure as a function of 
ram stroke [9] 
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The geometric variables in extrusion are the die angle, α, and the ratio of cross-sectional 

areas of the billet and extruded part, Ao/A f, called the extrusion or reduction ratio R. Die 

angle is usually chosen by rule of thumb to optimize the tradeoff between higher surface 

area (and thus friction) at low die angles and the higher flow turbulence (and thus higher 

ram pressure) at high angles.  Extrusion ratios typically range from 10-100, although 

values can be as high as 400 for special applications and lower for less ductile materials, 

although never below 4  - the minimum value necessary to deform the material plastically 

through the entire billet [9]. Extruded products generally range from 7.5 to 30 m in 

length, with shorter members being cut from longer extrusions.  

 

The main parameter for describing the final product shape is the circumscribing-circle 

diameter (CCD), which is the diameter of the smallest circle which completely encloses 

the cross section of the part. CCDs for aluminum and magnesium typically range from 6 

mm to 1 m (0.25 in. to 40 in.), although most are within 0.25 m (10 in) [9]. Furthermore, 

for non-solid, round extrusions, there is an increase in frictional contact area due to the 

additional inner perimeter of the cross section. This added force requirement is quantified 

by the shape factor, which is related to the ratio of the perimeter of the extruded part Cx 

to that of a circle of equivalent area Cc. A solid round extrusion has a minimum shape 

factor value of 1, while increasing complex shapes will have higher values. From 

literature [8], we can express the shape factor as: 

25.2

02.098.0 







+=

c

x
x C

C
K              (1) 

The main operating parameters are the extrusion speed and temperature. Extrusion 

speeds, as defined by the speed of the runout table, range up to 30 m/min (100 ft/min), 

generally lower for aluminum and magnesium and higher for harder steel and refractory 

alloys [9]. As described later on in Section 4.1, a reasonable extrusion speed for both 

metals was determined to be 19 m/min. Extrusion temperatures are generally chosen to be 

~60-70% of the melting temperature, as the recrystallization temperature scales with 

melting temperature. Since aluminum and magnesium have similar melting points, they 

can be extruded in the same standard range of 375ºC to 475ºC [9].  
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The final parameter involved in extrusion is the actual extrusion force. The force required 

to perform a desired extrusion depends most directly on the reduction ratio R as well as 

the strength as defined by the coefficient and exponent of the material’s plastic strain 

law nKεσ = , where the ideal strain ε is given by Rln=ε [8]. Assuming ideal 

deformation without friction, the ram pressure is thus expressed as, RYp f ln= , where 

the average flow stress is defined by )1/( nKY n
f += ε . However, in reality friction 

between the billet and container increases the actual strain above that of the ideal value. 

Likewise, the pressure must overcome not only the average flow stress but also the 

additional friction which depends on the contact area of the billet. While analytical 

formulas have been developed in literature to adjust for these realities, an easier and more 

reliable method has been to simply encapsulate all of non-idealities into a single 

extrusion coefficient k obtained from measurements [9]. Some empirical values of k 

obtained by P. Loewenstein are provide in Figure 5 below. In this method, the extrusion 

pressure is defined simply as Rkp ln= . Utilizing the shape factor Kx to account for the 

additional friction arising from complex shapes, the force is thus given by multiplying the 

billet area by the pressure: 

 

( )foxoo AAkKApAF /ln==       (2) 

 

While empirical data on magnesium was not found in literature, it can be estimated from 

the analysis above, noting that the ratio of ideal extrusion pressures for aluminum and 

magnesium can be approximated by the ratio of their average flow stresses. The strain 

laws 1.0200 εσ ⋅= MPaAl and 09.040 εσ ⋅= MPaMg  obtained in literature imply a ratio of 

~5; hence, the extrusion constant for magnesium can reasonably be approximated as one-

fifth that of aluminum. Based on Figure 5, the extrusion constants at 400ºC for Al and 

Mg were determined to be ~ 68.9 and 13.8 MN/m² respectively.  
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Figure 5: Extrusion constant k for various metals at different temperature [9] 

 

Now that extrusion has been sufficiently introduced, I will turn to an overview of 

technical cost modeling explained within the context of the MSL Extrusion cost model. 

 

    2.2 Process Based Cost Modeling and the MSL Extrusion Model        

       2.2.1 Operational Principles  

Process Based Cost Modeling is a modeling technique where a physical process is 

deconstructed into its constitutive sub processes in the effort to isolate individual cost 

drivers. Using industry guidelines and mathematical formulas, engineers relate part 

geometry and material properties to the processing parameters which ultimately define 

the manufacturing process and determine cost [7]. The ability to fine-tune part geometry 

and operational parameters allows engineers to simulate various physical manufacturing 

operations on computers, thus helping to avoid “time-consuming and potentially 

expensive prototyping” [7].  

 

The effectiveness of these models in simulating cost lies in their recognition of the 

“interrelated nature of product design and production cost: while the cost of a product is a 

function of the process used to make it, at the same time, the cost of operating a process 

is a function of the design of the product being produced” [7]. In the same spirit, a PBCM 

feeds various user inputs, such as part material, geometry, and operating parameters, into 

an analytical simulation of each subprocess, which in turn computes material, energy, 

labor, equipment, and other relevant costs. In this way, an engineer can understand which 

aspects of design – whether specific part dimensions or operating conditions – drive 

specific as well as overall cost. 
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Table 3: Elements of manufacturing considered in MSL Extrusion Cost Model 

Fixed Costs Variable Costs 
Main Machine Cost Primary Material Cost 
Auxiliary Equipment Cost  Secondary Material Cost 
Installation Cost Energy Cost 
Building Cost Labor Cost 
Tooling Cost  
Overhead Labor Cost  
Maintenance Cost  
Cost of Working Capital  
 

This framework is easily explained in the context of the MSL’s Extrusion Model.  

This model splits extrusion into seven distinct component processes – billet preparation, 

billet pre-heating, extrusion, run-out, bending and coating, aging, and inspection. With 

each of these sub processes, the cost model utilizes analytical formulas together with user 

defined part and operating parameters to compute twelve distinct variable and fixed costs, 

shown in Table 3 above, on both a per year and per unit basis. Variable costs include 

primary material, secondary material, energy, and labor costs, while fixed costs include 

the main machine, auxiliary equipment, installation, building, tooling, overhead labor, 

and maintenance costs, as well as the cost of working capital. 

 

Each of the seven processes has an associated set of specific operating parameters, such 

as scrap and reject rates, temperature, power requirement, heat loss factor, equipment 

dimensions and speeds, workers required, and other parameters. Some of these, like scrap 

rates and temperature, are user-defined inputs governed by industry rules of thumb or 

empirical data, while others, such as cycle times and workers required, are determined 

internally based on the part geometry, material, and values of other related parameters. 

For example, the number of workers required depends on the number of workers per shift 

(a user input) and the annual required production time, itself a formula which depends on 

extrusion cycle time and ultimately part geometry. There also exists a global set of user-

defined exogenous parameters which apply to the entire model, such as annual 

production volume, electricity cost, interest rate, cost of floor space, the ratio of indirect 

to direct workers, and working capital period, among others.  
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The particular set of parameters for any specific stage depends entirely on the type of 

physical operation which is occurring (heat application, force application, etc) and the 

types of corresponding costs which arise from that process. Together with user-defined 

part and material parameters, often supplied by an outside database, these values feed 

into various intermediate calculations such as cycle time per stage, indirect and direct 

labor requirement, scrap recovered, part weight before and after each sub process, annual 

production time required, fraction of line allocated, energy consumed, heat loss, and floor 

space allocated, among other data. These intermediate data then recombine with various 

exogenous parameters within the various specific cost calculations. In general, variable 

costs scale linearly with some metric of output - mass, energy consumed, labor required, 

etc - while fixed costs are amortized over the life of capital, whether a piece of 

equipment, tool, or building. A simplified illustration of this flow of information is 

depicted in Figure 6 below. While the graphic concerns only the most important costs, in 

reality, this structure applies to the entire spectrum of subcosts contained in the model.  

 
Figure 6: Simplified Extrusion Cost Model Structure 

 

 
These costs are then totaled across all processes to yield a total annual and per unit cost 

for the extrusion specified. Furthermore, the distribution of total costs among both the 

twelve identified variable and fixed costs as well as among the seven distinct stages gives 
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critical insight into the key drivers of overall cost. Figure 7 shows an example 

distribution of costs for a 50 mm diameter, 10 mm thick aluminum tube at a production 

rate of 40,000 per year. For the subprocess bar chart, the $10.88 material cost and $0.10 

scrap credit were excluded since these factors exist on multiple subprocesses.  

 
Figure 7: Example distribution of costs by type and by subprocess 
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An additional feature of the model is that from the annual production volume and 

rejection/scrap rates, one can track the quantity in kilograms as well as the number of 

parts entering each step of the process. Further, calculations of cycle times and the 

fraction of line dedicated to production of the given part provide insight into time 

requirements and can assist in the optimization of time allocation within a plant. This 

process-oriented construction results in approximating real-life cost distributions, 

evidenced, for example, by realistic economies of scale as illustrated in Figure 8.  In 

general, since costs are built up from underlying parameters, the model can readily be 

used to explore how changes in specific parameters impact cost.  

 

Figure 8: Economies of scale for 70 mm wide, 10 mm thick, 1 m long Mg tube 
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Having conceptually explained the MSL Extrusion cost model, it’s now important to 

address some specifics regarding layout and the relationships between various tabs. This 

will be important for understanding the changes and additions to the model discussed in 

Section 3. 

 

       2.2.2 Model Layout and Tab Functionality  

The MSL Extrusion cost model consists of seven tabs: “Model”, “Part Data”, “Material 

Data”, “Downtime”, “Extrusion Data”, “Strength Analysis”, and “Revision Notes”.  The 

cost model itself lies in the “Model” tab, where the seven sub processes are arranged 

sequentially left to right with their respective intermediate calculations directly below, as 

shown in Figure 9.  For each one, there is a corresponding table of user-defined 

parameters located on the left edge of the worksheet, the values of which feed into both 

the intermediate and cost calculations. There is also a Part Information table which pulls 

all of the data needed to define the part – notably material, CCD, wall thickness, weight, 

surface area, length, and cross sectional area – from the “Part Data” tab.  Each row in 

“Part Data” corresponds to a different part while columns refer to specific geometric 

quantities, so depending on what part number is specified by the user, the table extracts a 

row of values.  

 
Figure 9: Organization of “Model” tab 
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Likewise, the Material Information table in “Model” extracts all the material data 

corresponding to the part – density, specific heat, billet price, scrap price, extrusion 

constant, etc. – from a similarly constructed “Material Data” tab. “Downtime” feeds data 

into the model specifying the number of hours per day a line is idle, being maintenanced, 

shut down, etc., while “Revision Notes” is simply documentation of changes that have 

been made to the model. “Strength Analysis” constitutes my additions to the model for 

performing strength calculations and will be described in detail in Section 3.  

 

Finally, the “Extrusion Data” tab contains two tables of parameters – one pre-existing 

(top) and one added as part of this work (bottom) - characterizing a number of various 

sized extrusion presses, as shown in Figure 10. Accordingly, the Press Data table in 

“Model” extracts the data corresponding to the specified press size, as determined by 

methods described later in Section 3.5. However, unlike the part and material data 

described above, much of these data cannot be directly computed or estimated, but rather 

must be obtained directly from the manufacturer. These parameters include the pressure 

exerted by the press, the diameter, length, and weight of the billets, the press and 

handling system cost, runout table length, and the number of extrusions per hour, all of 

which may differ between aluminum and magnesium. To acquire these data, I contacted 

Scott Burkett of Ube Machinery America, Inc. based in Ann Arbor, Michigan.   

 

Figure 10: Screenshot of extrusion data table  

 

 

In addition, he provided me with a method of estimated the cost of an extrusion press and 

handling equipment as a function of press size. Press and handling system costs scale 
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linearly with tonnage at the rates of $1150 and $820 per US ton respectively. While 

specific magnesium press data fell under the realm of proprietary information, he told me 

that while magnesium equipment is more complicated and expensive, you can 

approximate the billet dimensions and forces reasonably well with the aluminum data. 

Due to higher complexity and smaller supply, Mg machinery is more expensive, so the 

user must make an assumption regarding the scaling for magnesium equipment costs.  

 

These data were used to construct the bottom data table in “Extrusion Data” in a similar 

fashion to the pre-existing top table, with billet diameter increasing moving to the right. 

This construction results in a 1:1 correspondence between press size and all other 

relevant parameters.   

 

       2.2.3 Example of Calculation Flow  

With a clear picture of the model in mind, let’s walk through a sample cost calculation in 

order to illustrate the flow of information described in the previous two sections. 

Consider an arbitrary aluminum part X of some geometry as specified by the row in the 

“Part Data” table labeled “X.” Aluminum 6061 happens to be the material labeled “1” in 

the “Material Data” tab. Without going further here, let’s also say that the model 

determines the proper press size to be the 16.05 MN press in the bottom table of 

“Extrusion Data.” Hence, when the ‘Part Number’ field of the “Model” tab is set to X, all 

of these corresponding data are automatically loaded into the worksheet in their 

respective locations. 

 

In the first step, “Billet Preparation,” over 93% of cost is material cost. This cost is 

calculated from the material input, itself calculated from the number and weight of billets 

needed to achieve the production volume, in addition to billet price, scrap price, and 

scrap produced, another formula. The next major cost is labor, which is computed based 

on two intermediate calculations – the number of direct workers and the annual number 

of paid hours – and the exogenous wage rate.  The number of direct workers itself 

depends on the internally determined fraction of the line required, which feeds into other 

major costs – main machine (loading equipment) and building costs (dependent on square 
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footage of area taken up by the equipment). Their full cost is amortized over 20 years, 

with the result being multiplied by the fraction of line required, reflecting the fact that 

this line is being shared among multiple products. Maintenance cost is computed simply 

as an exogenously determined percentage of fixed costs, while the cost of working capital 

is the opportunity cost of holding cash equivalent to three months worth of variable costs.  

 

The next step, “Billet Preheating” operates in a similar way although this time, energy 

and labor costs dominate. Based on input parameters such specific heat, operating 

temperature, heat loss factor, and heating efficiency, the total energy consumed by the 

extrusion is computed as an intermediate calculation. This is then multiplied by the 

exogenous electricity cost to yield annual energy cost. Labor cost is calculated similarly 

as above, with the number of workers per line being multiplied by the wage rate and the 

fraction of time the line is used for this particular extrusion. Based on exogenous ratio of 

indirect to direct workers, there is also a similar overhead labor cost. All other costs – 

machine (furnace), building, working capital, etc – are calculated the same as before. 

 

Next, we have “Extrusion,” which unlike the previous steps involves intermediate 

calculations dealing with the extrusion press, such as reduction ratio, extrusion time, 

extruder power use, and the number of dies required to achieve the production volume. 

More importantly, as the rate-limiting process, the cycle time of extrusion ultimately 

define not only the energy and labor costs of this step, but also the cycle times, and hence 

time-dependent costs, of every other step in the process. The extrusion cycle time is 

determined by dividing the runout table length by the extrusion speed and adding the 

dead time (user input). This per billet cycle time ultimately defines the fraction of line 

needed and, combined with the computed die changing time, the annual production time 

required for the entire process. All other sub costs are calculated in the same way as 

before with slight changes. Notably, the amortized press cost corresponds to the press 

located in the “Extrusion Data” tab deemed appropriate for the extrusion by methods 

discussed later in Section 3.5. Energy use is determined by multiplying the annual 

production time by the extruder power rating and unit energy cost, while material costs 

become a credit due to the recovery of scrap.  



 25 

Having modeled the most important physical processes in the first three steps, the 

remaining sub processes are less analytically intense. “Runout” is quite simple and 

contains only a few minor differences, namely the main machine and building costs are 

associated specifically with the runout table, and that there is a secondary material cost 

associated with runout lubricant. “Bending and Coating” deals with costs associated with 

the use of bending or electronic coating equipment. Aside from equipment costs, bending 

costs derive from the number of bends while coating costs depend on the total surface 

area of the extruded parts. “Aging” is a simple step where the extruded part is kept in an 

oven for a while to improve microstructure. Energy and labor costs parallel those of 

“Billet Preheating,” while machine and building costs are related to the secondary oven. 

“Inspection” is a simple step in which the only costs are those of labor, working capital, 

and a minor scrap credit due to an exogenous reject rate. Finally, the final section titled 

“Cost Summary” adds up all of costs through all seven processes associated with 

producing part X. It breaks down the cost distribution by both subprocess and by subcost.  

 

Having introduced the mechanics of extrusion and also the structure of the MSL 

Extrusion cost model, it is now appropriate to introduce the metrics of strength which can 

be used to quantify the structural integrity of extruded parts in various loading conditions. 

In the effort to model typical forces experienced by structural members in vehicles, we 

will discuss axial loading as defined by Euler buckling load, deflection under center load, 

and deflection under end load. Then we will have achieved an adequate overview of 

theory to demonstrate, through a case study, the model’s ability to compare aluminum 

and magnesium extrusions in terms of cost, weight, and performance.  

 

    2.3 Structural mechanics of three distinct loading conditions 

       2.3.1 Axial loading  

Axial strength is particularly important in applications where large loads, whether from 

the weight of mass or from rapid external compression such as a collision, exert large 

stresses along the length of an extruded member. For thin, solid and semi-hollow 

members, these stresses can be particularly high due to the relatively low cross-sectional 

area. For such stresses, the critical Euler buckling load is a useful metric for quantifying 
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axial strength. The Euler buckling load is the maximum compressive load a long, slender 

member can sustain before failing via bucking due to elastic instability, as illustrated in 

Figure 11 below. It is given by: 

2

2

e
c L

EI
F

π= ,        (3) 

where E is the material’s Young modulus, I is the area moment of inertia, and Le is the 

effective length. The effective length is used to account for differences in the shape of the 

buckling mode due to different conditions of end support. For a hollow rod statically 

supported on both ends, a reasonable proxy for a structural member in a car body, the 

area moment and effective length are defined by ))(4/( 44
io rrI −= π and 2/LLe =  

respectively. 

 

Figure 11: Simply supported column subjected to axial load F [10] 

 

Depending on the slenderness ratio – defined as the ratio of the effective length to 

minimum cross sectional radius – a column will fail via buckling, plastically deformation, 

or somewhere in-between. The intermediate slenderness ratio of structural columns 

typically means that under load a column will bend somewhat and then plastically fail.  

Thus, the Euler formula is not a perfect metric for axial strength, but neither is the yield 

stress, since, since in reality, loads, such as those applied in a collision, are applied fast 

and without perfectly fixed end conditions. Nevertheless, it is a useful metric of 

comparing relative strengths between members. While maximizing strength might be the 

obvious goal for vertical members intended to hold up weight, engineers designing the 

chassis and frame of a car likely seek an optimal intermediate value. Ideally, a member 



 27 

would be not so weak so as to fail in a fender bender, and yet weak enough to crush or 

bend somewhat to dampen an impact and absorb energy in a potentially fatal collision. 

Typical collisions involving medium sized cars traveling at 50 km/hr can range from 50 

to 200 kN [11].  

 

       2.3.2  Center loading  

The application of a load perpendicular to the length of a long extrusion is a common 

loading condition in a frame or spaceframe body structure and chassis of a vehicle, where 

members must endure side collisions and hold up the weight of various heavy castings 

such as the engine block. While in reality, such loads are distributed along the length, a 

reasonable first-order metric for comparing perpendicular strength of various beams is to 

look at the deflection that arises from a point load at the center of the beam, as illustrated 

in Figure 12. 

    

 

 

 

The deflection function of an end-supported beam under center loading can be easily 

derived from mechanics by integrating the moment twice. Using this method, the 

maximum deflection is given by:  

EI
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3

max =δ ,        (4) 

where F is the applied force, L is the length, E is the modulus, and I is the area moment, 

as earlier described for a cylindrical beam. Likewise, by rearranging terms we can solve 

for applied force as a function of the max deflection, thus providing flexibility in how 

safety factors and strength tolerances are defined. In many applications, the structural 

integrity of the system depends on various beams maintaining their proper shape; hence, 

Figure 12: Doubly end-supported 
beam under center load [12] 
 

Figure 13: Cantilever deflection by 
end load F [13] 
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the max deflection is a good metric for quantifying an extruded part’s ability to withstand 

bending due to side forces.  

 

       2.3.3 End loading 

The final loading condition to be considered in this work is that of a point load on the end 

of a singly-supported beam, also known as cantilever bending, as illustrated in Figure 13.  

End loading conditions arise in real-life during collisions where the angle of force comes 

from non-axial directions, in addition to structural parts which bear the weight of heavy 

automotive components near their end. Similar methods from mechanics applied above 

can be applied here as well. By equating expressions involving the curvature – the second 

derivative of deflection – with those involving the modulus and moments of inertia and 

integrating, the end deflection is found to be:  
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3
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max =δ .        (5) 

This expression differs from center loading by exactly a factor of 4; hence for the same 

load, the maximum deflection when applied at the end will be four times that when 

applied in the center. In reality, end loads are somewhat distributed, thus the true 

behavior will lie somewhere in between these two results. Similar to above, force can be 

solved as a function of deflection, thus allowing engineers to calculate the forces capable 

of achieving various deflection tolerances.  

 

Together these three loading conditions provide a useful analytical framework for 

understanding the ultimate relationship between the cost of an extruded part and its 

structural performance, the key link between the two being the part dimensions. While 

depending explicitly on length, the strength implications of various geometries arise more 

prominently through cross-sectional moment of inertia, which itself is a strong function 

of the inner and outer diameter of extruded hollow parts. In turn, the thickness strongly 

drives weight and ultimately the extrusion cost as reflected in material costs, force 

requirements, and cycle times. Combined with background theory on extrusion and cost 

modeling described earlier, we are now ready to introduce the technical means of 

understanding these relationships within the MSL Extrusion cost model. 
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3 Integrated Cost and Structural Analysis Model 
 
In order for cost comparisons between aluminum and magnesium to be useful, it is 

critical that they be done on performance equivalent components. As such, the structural 

analytics described in the previous section needed to be incorporated directly into the cost 

model. This required that three new categories of calculations - purely mechanical 

functions, integrated cost-structural functions, and a press size algorithm – be integrated 

into the model using the functionality of Microsoft Excel.  

 
    3.1 Interface  

A tab called “Strength Analysis” was created within the MSL Extrusion model for the 

purpose of calculating the strength characteristics of round extruded parts and 

dynamically interfacing with the cost model contained in the “Model” tab. Located at the 

top left of this tab is a table of part parameters – thickness, diameter, material, length, 

cross-sectional area, volume, etc. – which defines a hollow, cylindrical beam simulated 

by the strength functions contained in the spreadsheet, as depicted in Figure 14. This 

beam is called the Dynamic Beam. When called in the spreadsheet, these functions 

modify these part parameters in order to meet some user-defined performance constraint. 

Using Visual Basic subroutines, the “Strength Analysis” tab can dynamically feed the 

dimensions contained in the Dynamic Beam table into the “Model” tab, letting the cost 

model operate on that part and then retrieve the cost output.  

 

Since part information is imported into the model from the “Part Data” tab, a special part 

labeled Dynamic Beam was added to the database in order to link the model with the 

“Strength Analysis” tab.  Rather than being a manual input within this tab, as is the case 

for all other parts, the part data contained in this row references the Dynamic Beam table 

in the “Strength Analysis” tab. In this way, the “Strength Analysis” tab communicates 

with the “Model” exclusively through Dynamic Beam and only when the cost model is 

set to this part. This design effectively treats the cost model as a black box, thus isolating 

the strength analysis features and preserving the cost model’s original operation. By 

systematically varying the dimensions of Dynamic Beam, one can thus analyze and 
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compare the cost-weight-strength relationships for round aluminum and magnesium 

extruded beams. 

 

Figure 14: Screenshot of Dynamic Beam Table 

 

 

    3.2 Mechanics Functions  

With this goal in mind, a set of Visual Basic functions was developed in the MSL 

Extrusion cost model to compute dimensions (thickness or outer diameter) or metrics of 

strength (buckling load, deflection, or load required) associated with input parameters 

and constraints provided by the user. Some functions compute the dimensions necessary 

to achieve a certain metric of strength, while others compute a metric of strength given 

the dimensions and loading condition. These functions, described below, only perform 

the mechanics calculations described earlier and do not interact with the cost model at all. 

Please refer to the Appendix for full source code. 

 

BucklingCalc( ) This function computes either the thickness or diameter (holding the 

other constant) needed to achieve a specific Euler Buckling strength of a given material. 

If the function is given a diameter (implicitly defining the outer radius), it solves equation 

3 for the inner radius, as shown below, and returns the thickness io rrt −= . 
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Likewise, if given a thickness, BucklingCalc returns the outer diameter which will 

achieve the desired buckling strength. However, in this case the terms cannot be simply 

rearranged, as solving for the outer radius requires solving a cubic polynomial: 
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BucklingCalc uses the closed form solution of 023 =+++ dcxbxax  to solve this 

equation for ro and then returns the diameter D = 2ro. As an example, if the Dynamic 

Beam length is set to 1 m, calling the formula ‘=BucklingCalc(“Al”,”Thickness”, 85, 

2.60)‘ returns a value of 4.59. This is equivalent to saying that for a 1 m long hollow 

aluminum rod of 85 mm diameter, the thickness required to achieve a 2.60 kN Euler 

buckling load is 4.59 mm. Likewise, calling ‘=BucklingCalc(“Mg”,”Diameter”, 5, 2.60)’ 

will solve for the diameter (in mm) required to achieve a 2.60 kN Euler buckling load for 

a 1 m long hollow magnesium rod of thickness 5 mm. In general, the first argument is the 

material, (“Al” or “Mg”), the second is the dimension to vary (“Thickness” or 

“Diameter”), the third is the value of the fixed dimension (either thickness or diameter in 

mm), and the fourth argument is the desired critical Euler buckling load in kN. 

 

DeflectionCalc( ) This function computes the thickness or diameter necessary to achieve 

a specified center or end point loading condition. It operates similarly to BucklingCalc 

but instead of having an Euler force as an input, it takes a load (in kN), loading condition 

(center or end), and deflection (as a percent) as inputs. It answers the questions of the 

form: for an Al or Mg hollow cylinder of thickness (diameter) of X mm, what is the 

diameter (thickness) required to achieve a Y% deflection under Z kN center or end load?  

 

When given a constant diameter, DeflectionCalc solves either Equation 4 or 5 (depending 

on whether center or end loading is specified) for the inner radius as a function of outer 

radius, force, length, and deflection. For end loading for example, the calculation is: 
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The procedure for solving for thickness under the constant diameter constraint is similar 

to that of the buckling calculations, requiring DeflectionCalc to solve a similar cubic 

polynomial. For end loading, rearranging Equation 5 yields: 
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Again, this can be solved using the closed form solution to the standard cubic 

polynomial. Both of these calculations are nearly identical for center loading, except that 

the 4/3 factor is replaced with a 1/3. As an example, calling the formula 

‘=DeflectionCalc(“Center”,”Al”,”Thickness”, 85, 0.02, 15)’ returns the value 4.32. This 

says that for an aluminum hollow rod of diameter 85 mm, the thickness required to 

achieve a 2% deflection under a 15 kN center load is 4.32 mm. In general, the arguments 

are loading type (“Center” or “End”), material (“Al” or “Mg”), varied dimension 

(“Thickness” or “Diameter”), value of the fixed dimension (thickness or diameter in 

mm), deflection (expressed as a percent decimal), and applied load in kN. Since the 

function takes both the percent deflection and load as inputs, the user has the 

functionality to investigate them independently by leaving the other constant. The user 

can also systematically investigate the differences between holding thickness and 

diameter fixed, as well as the differences between center and end loading for both 

materials. In general, having so many independent variables provides great functionality 

to investigate the relationship between geometry and deflection in various loading 

conditions. 

 

Deflection( )  This function computes the deflection percent of a specified beam under 

given load. For center and end loading, Deflection simply inserts the input values into 

equations 4 and 5 respectively. For example, calling ‘=Deflection("Center","Al", 1, 6, 85, 

15)’ yields the result 0.0153, which simply says that the max deflection of a 1 m long, 6 

mm thick, 85 mm diameter aluminum tube under 15 kN center load is 1.53%.  

 

Load( ) This function is exactly the same as Deflection except that instead of calculating 

deflection as a function of load, it calculates load as a function of deflection. For 
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example, the formula ‘‘=Load("Center","Al", 1, 6, 85, 0.0153)’ gives the result 15 kN, 

the inverse calculation as the last example. 

 

Weight( ) This function computes the weight of a hollow cylindrical rod from the density 

(determined by material), length, thickness, and diameter. The formula ‘=Weight(“Al”, 

4.6, 85, 1) will return the weight of a of a 1 m long, 4.6 mm thick, 85 mm diameter 

aluminum tube. These five functions - BucklingCalc, DeflectionCalc, Deflection, Load, 

Weight - constitute the purely mechanics calculations in the spreadsheet. 

 

    3.3 Integrated Cost-Structural Functions  

Another set of functions was developed specifically for interfacing with the cost model. 

These functions work by calling BucklingCalc and DeflectionCalc internally subject to 

specified geometric and loading constraints, inputting their results into the Dynamic 

Beam table, and retrieving the associated cost output.  

 

CostCalcBuckling( ) This function is an extension of BucklingCalc which interfaces 

with the cost model. It works by taking the same inputs as BucklingCalc, feeding these 

inputs to it internally, pasting the output dimensions in part data for the Dynamic Beam, 

and returning the corresponding cost from the cost model, either in units of  $/part or 

$/kg. Since this function modifies values contained in cells, it cannot be called as a 

formula in the spreadsheet; instead, it must be embedded into a Visual Basic subroutine, 

as described below. As an example, calling ‘=CostCalcBuckling(“Mg”, ”Thickness”, 85, 

2.7, “unit”)’ within a Subroutine will give the result 33.53, which says that for a 85 mm 

diameter magnesium tube with thickness such that the Euler buckling load is 2.7 MN, the 

per unit cost is $33.53. Likewise, CostCalcBuckling can also be used to determine the 

cost of extrusions where the thickness is fixed and diameter allowed to vary in order to 

meet the strength constraint.  

 

CostCalcDeflection( ) This is identical to the previous function except that it internally 

calls DeflectionCalc instead of BucklingCalc. Depending on the inputs provided, it will 

thus implicitly determine the thickness or diameter (depending on which is held fixed) 



 34 

necessary to achieve a center or end loading constraint (as defined by a deflection percent 

and kN load) for either Mg or Al. It then pastes these values into the Dynamic Beam table 

in the “Strength Analysis” tab, lets the cost model recalculate, and, depending on the type 

of cost specified, returns either the unit cost or cost per kg for the given extrusion. Again, 

it must be called within a subroutine. Revisiting the example discussed earlier for 

DeflectionCalc, calling ‘=DeflectionCalc(“Center”,”Al”,”Thickness”, 85, 0.02, 15, 

“unit”)’ returns a per unit cost of $23.41, but implicit in this calculation is the 

determination by DeflectionCalc that the appropriate thickness to achieve the strength 

constraint is 4.32mm. Together these two functions are solely responsible for feeding in 

and retrieving data from the cost model. 

 

    3.4 Cost Calculation Subroutines  

As described above, Visual Basic subroutines were developed in order to perform a user-

defined sequence of cost calculation operations. Subroutines exist in Visual Basic as a 

key, thread-protecting element of code structure, ensuring that parallel lines of code are 

not modifying the same cell in the spreadsheet simultaneously. This is necessary in order 

to ensure that all references in the spreadsheet are uniquely defined at any time. If, for 

example, the CostCalc functions above were allowed to be called in cells, then a 

recalculation of the spreadsheet could result in multiple instances of a CostCalc function 

changing the value of a cell at the same time. Hence, subroutines are key in ensuring 

proper interfacing between the spreadsheet and functions which alter the value of cells. 

 

Additionally, subroutines can be utilized to performing repetitive operations in the 

spreadsheet, thus eliminating lots of manual inputting and saving time. In particular, 

subroutines were developed to cycle through a user-defined set of extrusions using a For 

Loop (incrementing some specified dimension or structural metric), each time inputting 

the current values into the Dynamic Beam table, and extracting the corresponding cost 

from the “Model” tab, as described below. 

 

PerformBucklingCostCalculations( ) This Subroutine performs a sequence of cost 

calculations on an array of Euler buckling load constraints via CostCalcBuckling and 
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pastes the results in a user-defined array of cells. It extracts all of its input information 

from a table in the “Strength Analysis” tab called Buckling Cost Calculations, as shown 

in Figure 15. 

 

Figure 15: Buckling Cost Calculations and Deflection Cost Calculations input tables 

   

 

These inputs include the unit of cost (per unit extrusion or per kg), number of calculations 

to be performed, location of the top cell of the array where costs are to pasted, cell 

location of the top Euler force constraint, dimension to be computed by BucklingCalc 

(thickness or diameter), the value of the fixed dimension in mm, and the material (Al or 

Mg). The subroutine is essentially a For Loop which, for each iteration, takes the current 

force constraint from spreadsheet, calls CostCalcBuckling() (thereby implicitly 

computing the thickness or diameter required to achieve the current force), and pastes the 

corresponding value in range of cost values on the same row as the current force. The 

loop then moves down to the next Euler force constraint and repeats the operation, 

iterating until an index has reached the input number of calculations. In this way, the user 

can quickly compute the cost of achieving a whole range of Euler buckling loads by 

varying either thickness or diameter. 

 

PerformDeflectionCostCalculations( ) This subroutine is structurally identical to the 

previous one, except that it calls CostCalcDeflection within a For Loop and thus needs a 

slightly different set of inputs. An analogous Deflection Cost Calculations table, also 

shown in Figure 15, is used to provide the subroutine with these inputs. They include the 
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same parameters as used in PerformBucklingCostCalulations with a few extras – the type 

of loading condition (center or end), the deflection parameter held constant (either 

percent deflection or load applied in kN), and the value of that constant parameter. 

Specifying whether deflection or load is held constant is necessary so that the subroutine 

knows which parameter is to be iterated within the For Loop. Accordingly, the cell 

location specified as “Top Deflection/Load” may refer to the top of an array containing 

either percent deflections or applied loads in kN. As before, the user has the option of 

varying either the thickness or diameter in meeting the deflection constraint. 

 

    3.5  Press Size Determination  

The last feature developed for the MSL Extrusion model is a method for determining the 

minimum size (and thus least expensive) press capable of producing a given extrusion 

based on the data tables in the “Extrusion Data” tab. The function PressSize utilizes the 

analytical methods described in Section 2.1 to compute the extrusion force as a function 

of the reduction ratio, billet diameter, and empirically determined extrusion constant k.  

 

PressSize( )  PressSize computes the force required to extrude the Dynamic Beam using 

Equation 2. Since the reduction ratio depends on the billet dimensions, the function 

cycles through press ensembles, arranged in order of increasing billet diameter, 

constructed from the data provided by Ube Machinery (the bottom table in “Extrusion 

Data”).  Each time it computes the force requirement based on the press data contained in 

that column and checks to see if it is less than or equal to the current press size (in MN). 

If not, it loops to the next press ensemble and repeats the calculation. It continues until 

the condition is satisfied, thus returning the least expensive press suitable for the 

extrusion. If a satisfactory press is not found, the function will return an error.  

 

It’s worth noting that while the table is arranged in order of increasing billet diameter, 

some diameters can be used on multiple presses, so there is an occasional drop in press 

size corresponding to a lower pressure press as you move to the right. However, since the 

theoretical extruding force scales with the reduction ratio, it will not change over press 
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ensembles that have the same billet size, and hence, the set of presses which may be 

returned by the function increases monotonically in price from left to right. 

 

Figure 16: Drop-down menu for method of determining press size 

 

 

In contrast to all functions described hitherto, PressSize is called within the cost model 

itself, inside the Press Data table. A drop-down menu, shown in Figure 16, gives the user 

a choice of method in how to determine the press size. They have the option of selecting 

“PressSize(),” which uses PressSize to determine the appropriate press, “CCD & Wall 

Thickness”, which looks at the CCD and minimum part thickness to assign a press size, 

or “Manual Override.” It’s important to realize that “PressSize()” takes data from the 

bottom table in “Extrusion Data” (from Ube Machinery as explained in 2.2.2), while 

“CCD & Wall Thickness” takes its data from the pre-existing top table of press sizes. For 

“Manual Override,” the user must specify in the cell labeled ‘PRESS_OVERRIDE’ a 

valid press size which exists in the bottom table. This requirement is justified by the 

belief that the newer data from Ube Machinery is likely more accurate and reliable than 

the pre-existing data.  

 

It’s worth noting that each in each iteration of either cost subroutine, PressSize 

recalculates along with all other formulas in the cost model.  Thus it’s possible the press 

size will change in the middle of a subroutine. This is perfectly valid and would likely 

result in a distinct step up or down in corresponding cost plots. However, due to the large 
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differences in force between the presses contained in the table, it is highly unlikely to 

happen when only minor changes in dimensions are occurring.  

 

Collectively, the mechanical functions – BucklingCalc, DeflectionCalc, Deflection, Load, 

and Weight – the cost functions and subroutines – CostCalcBuckling, 

CostCalcDeflection, PerformBucklingCostCalculations, and 

PerformDeflectionCostCalculations – and PressSize completely describe the features 

developed within the “Strength Analysis” tab of the MSL Extrusion model for 

systematically studying the relationship between strength, weight, and cost of extruded, 

semi-hollow, Al and Mg cylindrical rods. Having detailed in Section 2.3 some of the real-

life applications of such extrusions, we now turn to a case study to demonstrate the 

capability of these functions in meeting this goal. 

 

4 Case Study 

    4.1 System and Assumptions  

The basic system under consideration in this case study is a 1 m long, Al or Mg hollow 

tube of wall thickness of 6-8 mm and diameter of 70-75 mm. This generic part shape was 

chosen because of its wide applicability to the various real-life loading scenarios 

described in 2.3.1 – 2.3.3. Indeed, many structural members in the space frame and 

chassis of an automobile fall within this general range of geometries, and while often not 

cylindrical,  they can be reasonably approximated as so.  

  

Moreover, we choose the same base case for both Mg and Al so as model the real-life 

situation where one is considering replacing an existing Al part with a similar Mg 

version. This is additionally helpful since it requires that cost differences between Al and 

Mg arise strictly from strength constraints and not from different initial geometries. 

Otherwise, it would be difficult to isolate these effects. Further, throughout this analysis, 

the length was kept constant at 1 m while thickness and diameter were allowed to vary 

around their base values within the various cost and mechanics functions. This is justified 

by the fact that in reality, the geometry of an automobile strongly constrains the length of 
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various parts, whereas the thickness and diameter can be varied somewhat without 

greatly affecting the space constraint.  

 

Table 4: Key material dependent assumptions  

Parameter Al Value Mg Value Explanation 
Extrusion Rate [m/min] 19 15-25 Similar extrudability values, consistent with 

ram speeds of 15-25 mm/s [14] 
Extrusion Temperature [ºC] 400 394 Constant percentage of melting temperature [9] 
Extrusion Constant 
[MN/m²] 

68.9 13.8 Derived in section 2.1 

Press Cost 
[$/US Ton] 

$1150  $1725 Manufacturer’s data for Al [6], Mg roughly 
estimated to be 50% more expensive 

Billet Price [$/kg] $2.98 $3.53 Pre-existing data, Mg more expensive as 
expected 

Press Scrap Price [$/kg] $2.00 $1.77 Bulk Mg scrap worth less than Al due to lower 
demand 

Fabrication Scrap Price 
[$/g] 

$1.63 $1.77 Post-extrusion Al scrap worth less than bulk 
scrap, not as significant for Mg 

 

In addition to part geometry, a whole host of assumptions were made for various cost 

model inputs. Key material-dependent parameter assumptions are listed in Table 4 above. 

While these assumptions are all fairly intuitive, extrusion rate deserves some additional 

mention due to its effect on cycle time and particularly strong capacity as a cost driver. 

While literature often defines extrusion rate in terms of ram speed, the cost model defines 

it in terms of the runout table speed which is considerably faster due to the reduction of 

cross-sectional area. For reduction ratios in the range 10-20, literature ram speeds for Al 

of 12.7-25.4 mm/s are consistent with constant runout speeds of ~8-30 m/min. Hence, the 

middle value of 19 m/min was used as the Extrusion Rate for Al. This value was used as 

the baseline for Mg as well since Al and Mg have roughly the same extrudability; 

however, higher and lower values were used for a sensitivity analysis to account for real-

life variation. In general, ram speeds are generally related to hardness, with Al and Mg 

being extruded much slower than harder steels.  

 

There are also many exogenous inputs into the cost model which are material-

independent, the most important of which are enumerated in Table 5. Again, most of 

these inputs are intuitive and do not warrant additional explanation. However it’s worth 

mentioning that the scrap and reject rates for all steps of the process were set to a 
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reasonable value of 1% for sake of simplicity with the exception of the scrap rate of the 

first step Billet Preparation. In this step, the scrap rate is not an input, but rather is 

implicitly defined by the integer number of parts which can be extruded from the billet. 

Whatever is left goes unused in the billet butt and is scrapped at the press scrap price. For 

all steps after extrusion, scrapped material is sold at the slightly lower fabrication scrap 

price, reflecting the fact that it’s harder to recover usable material from fabricated parts 

than from bulk. In general, the effect of the 1% scrap and reject rates is to reduce the 

weight and number of parts leaving each successive step of the extrusion process. Based 

on the annual production volume and final part weight, the model can thus use these rates 

to back calculate the number quantity and unit weight needed to enter each step, going all 

the way back to first step and thus defining the initial number of billets needed.  

 
Table 5: Key material independent assumptions 

Parameter Value Explanation 
Annual Production Volume 
[parts/yr] 

40,000 Reasonable value corresponding to ~170 extruded parts per 
working day 

Direct Wages $25.00 / hr High end for skilled labor and associated management 
Press Size 16.05 MN Determined by PressSize for system under consideration  
Unit Electricity Cost $0.07 / KW-hr Time-averaged market price 
Interest 10% Standard rate for amortization of plant and equipment 
Equipment Life 20 yrs Amortization period of extruder 
Indirect/Direct Workers 0.25 Reasonable estimate for additional indirect labor incurred 
Building Unit Cost $1500 / m² Reasonable cost of floor space 
Building Life 40 yrs Amortization period of building 
Production Life 5 yrs Amortization period of cutting tools 
Idle Space 25% Reflects empty space in plant 
Working Capital Period 3 months Reasonable value to ensure adequate operational liquidity 
Heating Efficiency 40% Conversion of electricity to heat 
Heat Loss Factor 50% Heat lost to environment 
Heat up / Billet Dwell time 200 s / 800 s Reasonable time to heat up billet 
Extrusion Power 20 kW Power requirement of extrusion press 
Downtime 5% Fraction of time production is halted 
Scrap/Reject Rates 1% All manual inputs set to 1% for all steps except Billet Prep, 

where scrap rate is determined by no. of parts in billet 
Scrap Recovery Rate 40% Only a fraction of scrap is actually sold at scrap price 
Aging Duration 10 hrs Annealing time ensures strong crystal structure 
Handling System Cost $820 / US Ton Manufacturer’s data assumed to be equal for Al and Mg [6] 

 

Finally, it’s worth noting that a constant Press Size of 16.05 MN was used throughout the 

following analysis. For the Al and Mg systems in question (including their dimensional 

extremes), this is the value determined by the Press Size function described in Section 

3.5. Having addressed all of the inputs used in the cost model, we can now demonstrate 
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an analysis of the system described above using the functions and interface described in 

Section 3.  

 

    4.2 Sensitivity to key input parameters  

Prior to analyzing various loading scenarios, it’s useful to understand general cost 

sensitivity to some important model inputs, specifically extrusion rate, billet and scrap 

price, and part thickness and diameter. Further, these sensitivities will be explored here 

and later on for Magnesium only, since the goal here is consider the aspects of a potential 

Magnesium process which make it preferable over some baseline Aluminum process.  

 

Later on we shall relax strength, geometric, and processing constraints on Mg to 

investigate how these sensitivities affect its desirability over Al. This analysis thus seeks 

to simulate the real-life scenario where a manufacturer has a pre-existing, effectively 

non-modifiable Al process and is considering whether or not a switch to a new 

magnesium process. This includes both replacing the existing process with Mg and 

creating a new Mg part with modified dimensions. This is realistic in the sense that a 

manufacturer would only switch to Mg if weight savings existed, and that if they could 

gain by modifying the aluminum process, they would have already done so.  

 

To this end, we will stick to the base system described in Section 4.1 for Aluminum. The 

following sensitivity analyses for Mg will prove useful in addressing more complex 

loading scenarios later on.  
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Figure 17: Extrusion Rate Sensitivity 
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Figure 17 illustrates how the cost of extruding a standard 70 mm diameter, 8 mm thick 

Mg tube varies with extrusion rate. All else held constant, the cost can be reduced ~4.5% 

by increasing the extrusion rate from 15 to 25 min/min. This results from the fact that all 

time-dependent quantities in the cost model – cycle times, labor costs, energy costs, etc – 

all fall when extrusion speed is increased. Further, this range of costs falls well below the 

$17.77 cost of making the exact same part in Al at 19 m/min. That is due to the fact that 

despite Mg being ~20% more expensive, the ~2/3 density means less material is needed, 

so overall cost is lower.  

 

However, due to the reduced modulus and yield strength of Mg, this part will be much 

weaker than its Al equivalent in every loading scenario, meaning that additional volume 

(and hence mass and cost) will be needed to achieve an equivalent strength constraint as 

Al. While subsequent analyses will keep extrusion speed constant at 19 m/min, in 

practice there is some flexibility to extrusion speed depending on grain structure, 

composition, and hardness, so this is useful to know. 

 

Figure 18 illustrates cost sensitivity to Mg billet and scrap prices. As one would expect, 

cost is strongly dependent on raw billet price, nearly doubling as the raw billet price 

increases from $2 to $5/kg. This results from the fact that raw material costs account for 
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~70% of the total cost of extrusion. Interestingly, unit cost is only weakly dependent on 

scrap price. This is due to the fact that a small percentage, usually 5% or less, is lost as 

scrap in the butt, and of that only 40% is recovered. Further, scrap prices are roughly half 

that of the billet price, so in the end, the scrap credit does little to effect the final cost.  

 

Figure 18: Cost Sensitivity to Mg Billet and Scrap Price 
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A side point is the strong dependence on billet price means that cost effectiveness of Mg 

is highly dependent on current market prices. If Mg price was lower and scrap was 

higher, both of which might result from increasing competition and demand in 

magnesium supply industry, then this may be very relevant to a manufacturer. However, 

movements in Mg and Al prices are likely to be correlated, and no doubt Mg will 

continue to remain more expensive in the near future. For this reason, we stick to the 

billet and scrap prices listed in Table 4 throughout this analysis, but nevertheless, this 

sensitivity is useful to understand for future studies when prices have changed.  

 

The final sensitivity to address is that of part dimensions – thickness and diameter - on 

mass. Having established above how strongly cost depends on billet price (and mass), it’s 

useful to understand how quickly, or equivalently volume, moves with changes in these 

dimensions, as illustrated in Figure 19 for a length of 1 m. As clearly seen, mass 

increases much faster with increasing thickness than diameter.  
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This is due to the fact that, for a tube of diameter 70 mm and thickness 6mm,  
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This means that volume (and hence mass) increases ~10X faster with increasing 

thickness than an equivalent increase in diameter. From a purely geometric standpoint, 

this analysis shows that that if strength or geometric constraints require thickness to 

change, there will larger cost implications than if constraints are keeping thickness fixed 

and varying diameter.  

 

Figure 19: Mass Sensitivity to Thickness and Diameter 
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    4.3 Axial Loading and Cost Implications of Euler Buckling Load Constraints  

The first loading condition considered is that of axial loading under an Euler buckling 

load constraint. Figure 20 illustrates the Mg and Al cost curves for 1 m long tubes of 

constrained 70 and 75 mm diameter. Constrained diameter is an appropriate model for 

real-life applications where the geometry of the vehicle places package constraints on the 

components. It’s important to realize that at each point, BucklingCalc has implicitly 

computed the thickness necessary to achieve the desired MN load; hence, thickness is 

implicitly increasing moving left to right. Figure 21 shows the corresponding cost and 

weight changes associated with switching from Al to Mg at each value on the x-axis. 

Throughout this analysis, a cost or weight change is defined as the value of magnesium 

minus the value of aluminum. 
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Figure 20: Comparison of Cost to Axial Strength – Constrained Diameter 
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Figure 21: Cost vs. Weight Tradeoff for Switch to Mg under Axial Loading  - 
Constrained Diameter 
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We can see from these figures that Mg is more expensive than Al at both 70 and 75 mm 

diameter. This is primarily due to the fact that Mg has to compensate for its lower 

Young’s modulus by attaining a higher area moment of inertia. However, since cross 

sectional area moves more strongly with outer diameter than thickness, Mg must increase 
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it’s thickness by so much when its diameter is constrained that it ends up being much 

heavier than the Al strength-equivalent, as reflected in the solid curves of Figure 21. 

Indeed, the ratio of derivatives is the same as that expressed in Equation 10, noting that 

volume and cross-sectional area differ only by the constant factor of length. Coupled with 

a higher billet price, Mg is thus more expensive at every buckling load.  

 

However, it’s worth noting that the net increase in cost between Mg and Al decreases 

from 70 to 75mm, as reflected by the dotted lines in Figure 21. This reflects the fact that 

cross sectional area increases more quickly in the outer diameter than the inner diameter. 

At 75mm, a proportionally lower value of thickness is required to achieve a certain cross 

sectional area than at 70mm, meaning that there is a net reduction in weight (and hence 

material cost) moving to 75mm. At 2.00 N for instance, the 70mm Mg tube is roughly 1.5 

kg heavier than its Al counterpart, whereas at 75mm it is only ~0.6kg heavier. In general, 

for any particular strength, we can continuously decrease weight by increasing diameter 

and reducing thickness until we reach the geometric limits of either the application or the 

extruder itself. 

 

This is a troubling outcome – holding axial strength and diameter constant, we increase 

both cost and weight when we switch to Mg. In this scenario, Mg would never be 

desirable. However, if we are willing to sacrifice some axial strength, then one can 

imagine attaining a positive weight savings, potentially making it cost effective. From 

Figure 20, we see that the blue and red solid curves cross $10 per unit at ~1.0 MN and 

1.3MN respectively. Hence if we are willing to sacrifice ~23% of axial strength, we can 

make 70 mm Mg and Al tubes of approximately equal cost. Sacrificing less, we will find 

a region where Mg costs more but also exhibits some weight savings. Sacrificing more, 

we can make Mg both cost and weigh less, as shown in Figure 22.  

 

Here, the curves represent the differences in cost and weight between an Al tube and Mg 

tube of exactly 1 MN lower Euler buckling load. We see that such a large strength 

sacrifice allows us to save both on both cost and weight when switching to Mg. When 

switching from an Al tube of 2.2 MN strength to a Mg tube of 1.2 MN strength, we save 
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2.07 kg weight and $6.39 in cost at 70 mm.  Obviously most applications, such as 

primary members in the space frame body structure or other structural applications, will 

not tolerate such a large sacrifice of strength; however, if such a large strength is not 

critical from a safety or function perspective, then it’s certainly worthwhile to consider.  

Alternatively, sacrificial Mg parts could be used in cars specifically for the purpose of 

buckling and absorbing energy in a collision, thus buffering more critical structural 

members. Of course, one could sacrifice strength by simply reducing the dimensions of 

aluminum – that would indeed lower its cost as well. However, the idea here is that if 

there already exists a desire to switch to Mg for specific strength gains, then sacrificing 

strength is a way to make it cost effective.  

 

Figure 22: Cost vs Weight Tradeoff with 1 MN Axial Strength Sacrifice 
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Figure 23 depicts the opposite case - that of constraining thickness and letting the 

diameter vary. This constraint is applicable to situations where a part is not package 

constrained, such as exposed parts or those not directly contacting other components 

along their length. The first obvious difference is that the Mg and Al cost curves at both 6 

and 8mm track each other quite closely, as opposed to Mg always being more expensive. 

This interesting phenomenon arises simply because of the particular values of modulus 

and density. Having a lower modulus, the diameters computed by BucklingCalc are 
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~15% higher for Mg than for Al; however, since the density is ~2/3 of Al, the weight is 

always less by ~23%. However, the ~17% higher billet price of Mg roughly cancels out 

this effect, thus allowing the cost curves to track each other quite nicely at both 6mm and 

8mm. This general effect holds even at higher thicknesses of 10-15mm. The stair-step 

shape of the curves is a result of the discrete jump in price associated with part mass 

increase such that the integer number of parts attainable from the billet decreases by one.  

When this happens, there is a simultaneous increase in the number of billets needed, the 

amount of material lost in the butt, and the annual production time required.  

 

Figure 23: Comparison of Cost to Axial Strength - Constrained Thickness 
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Secondly, it’s notable that the cost curves for 8mm are substantially higher than at 6mm. 

This again arises from the fact that the area moment of inertia depends more strongly on 

outer diameter than thickness, such that the net weight increase associated with the 2mm 

increase in thickness outweighs the effect of needing a slightly lower diameter to meet 

some strength constraint. For example, BucklingCalc shows that Al needs a diameter of 

59.33 mm to achieve 1.00 MN buckling load at 6mm thickness, while at 8mm thickness, 

the diameter required drops to only 56.22 mm. The increase in thickness from 6 to 8mm 
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increases the volume much more than the reduction in diameter reduces it, thus leading to 

higher mass and material costs. 

 

The fact that the area moment (and hence buckling load) moves so strongly with outer 

diameter has major implications on weight. When switching to Mg, you need a larger 

diameter to offset the lower modulus, but since it moves so strongly, you need not 

increase it by that much. As a result, when switching to Mg, the ~33% lower density 

dominates the marginal increase in volume associated with expanding the diameter, thus 

resulting in mass reduction as indicated by the green plots in Figure 23. At 6mm, 

switching to Mg results in a mass reduction of 0.57-0.8 kg, while at 8mm, it nearly 

reaches 1.0 kg. This mass reduction comes at almost no cost expense, since as described 

above, the costs curves track each other very closely, sometimes with Mg cheaper and 

other times Al. Hence, under constrained thickness, it is always advantageous to switch to 

Mg and save weight assuming that prices are such that production costs remain similar.  

 

    4.4 Constant Center Loading with Variable Deflection  

The next loading condition is that of center loading. Figure 24 illustrates cost vs. 

deflection curves for Al and Mg tubes of constrained diameter under a 20 kN center load.  

This scenario can be used to model situations in which a known force is applied under a 

deflection constraint, for example computing the dimensions needed to ensure that the 

force of a 20 MPH side collision doesn’t deflect the space frame by more than 5%.   

 

Moving to the right, BucklingCalc computes an implicitly decreasing thickness necessary 

to achieve a given deflection under the constant center load. Since cost tracks volume, 

cost decreases as well. Similarly to the behavior for axial loading, magnesium is again 

more expensive for both diameters, and further, both metals are cheaper when 

constrained at 75mm than at 70mm due to the strong dependency between the area 

moment of inertia and outer diameter.  
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Figure 24: Cost vs. Deflection under 20 kN Center Load – Constrained Diameter 
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Figure 25: Cost vs. Weight Tradeoff for 20 kN Center Load – Constrained Diameter 
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As shown in Figure 25, the cost change associated with switching to Mg decreases 

moving out to higher deflections due to the convergence of the implicit Mg and Al 

thicknesses. However, as before, there is a weight gain associated with the switch to Mg 

due to the relatively high thicknesses required to achieve the given constraints. While this 

weight gain becomes very small at high deflections, in reality one would not want to 

sacrifice so much strength, especially if it results in a weight gain instead of a weight 
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loss. Indeed, without relaxing some constraint in Mg, either diameter, extrusion rate, or 

strength, there are no feasible scenarios when switching to Mg is desirable under 

constrained diameter center loading. 

 
Figure 26: Comparison of Cost to Deflection under 20 kN Center Load – 
Constrained Thickness 
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Figure 26 illustrates the same loading scenario but with constrained thickness of 6 and 8 

mm. As with axial loading, the cost curves at both thicknesses track each other quite 

nicely, resulting in a small difference in cost. At any particular deflection, which one is 

more expensive depends mostly on the integer number of parts attainable in the billet, 

which is why, as volume changes, it alternates back and forth. Again there is a weight 

savings associated with switching to Mg due to relatively small changes in diameter 

needed to achieve a higher moment and thus a higher strength. Hence, when not package 

constrained, such as with parts that have free space around them, switching to Mg is 

practical from both a cost and weight perspective. In reality though, it could be that 

diameter is semi-constrained - that is, it can vary within some narrow range but not freely 

as is the case with constrained thickness. This intermediate case is addressed in the next 

section which describes the opposite loading scenario - modeling a constant deflection 

under varying center load.  
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    4.5 Constant Deflection under Varying Center Loads  

In this scenario, BucklingCalc computes the dimensions corresponding to some constant 

deflection under varying center load, as illustrated in Figure 27 for the case of 5% 

deflection and constrained diameter. This could be used, for example, to model the real-

life 5% deflection threshold for a spectrum of side collision forces.  

 
Figure 27: Cost vs. Center Load Associated with 5% Deflection – Constrained 
Diameter 
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As expected from earlier constrained diameter scenarios, 70 mm Mg is not only more 

expensive than 70 mm Al, but also weighs more over the entire spectrum of loads, as 

illustrated by the solid blue, red, and green plots respectively. However, knowing that 

both factors can be reversed to some degree by letting diameter increase, it’s natural to 

ask: what if we let only the Mg diameter vary slightly? Is it possible that a switch will 

become advantageous? This ‘semi-constrained’ scenario reflects the fact that in reality, a 

part shape may be slightly modified if switching to Mg is deemed feasible.  

 

As we’d expect, the Mg cost curve decreases if the diameter constraint is pushed out to 

73mm. However, what’s more interesting is that by simply increasing the constraint by 
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3mm, the weight gain turns into a weight loss, as depicted by the dotted green curve. So 

while it’s never advantageous to switch if Al and Mg are held to the same constraint, Mg 

quickly becomes preferable if we have some flexibility to expand the diameter slightly. 

By similarity of functional forms, these conclusions would also follow for axial and end 

loading conditions under constrained diameter.   Of course, one might ask: why not 

simply make Al at 73mm? Obviously this would be cheaper than making an identical Mg 

tube, but as described earlier, the focus here is not whether Mg is preferable over an 

adjustable Al process, but rather to discern which Mg scenarios make it preferable over 

some pre-existing, constrained Al process.  

 

Figure 28: Cost vs. Center Load Associated with 5% Deflection – Constrained 
Thickness 
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Having explored geometric flexibility, what if instead Mg extrusion rate changes? 

Indeed, in reality there is some uncertainty about what the actual proper extrusion speed 

will be due to differences in the microstructure, composition, processing conditions, and 

relative hardness of the raw material. Figure 28 illustrates the same loading constraint as 

Figure 27 but with constrained thickness and variable Mg extrusion speed. As we saw 

earlier, constraining thickness allows for a reduction in weight by switching to Mg with 

little or no extra cost at the same extrusion speed of 19 m/min.  
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However, if Mg extrusion speed is slower or faster, as might be the case, then Mg 

becomes absolutely more or less expensive, as depicted by the bolded and dashed blue 

lines respectively. Indeed, at 25 m/min, Mg is both cheaper and weighs less than its Al 

counterpart for the entire range of center loads examined.  However, for constrained 

diameter, one would not even bother hoping for a faster extrusion speed despite the 

reduction in cost since the Mg equivalent still weighs more – one would simply choose to 

stay with Al. Nevertheless, these previous two examples demonstrate how the relaxation 

of geometric (diameter) or processing (extrusion speed) constraints expand the number of 

scenarios in which switching to Mg is advantageous.  

     

4.6 Constant End Loading with Variable Deflection  

Figure 29: Cost vs. End Deflection – Constrained 70 mm Diameter 
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Figure 29 is the end loading analogue of Figure 24 for a constrained diameter of 70 mm. 

First notice that the deflection range of 5-19% extends much further than the 3-6.5% 

range of Figure 24. This is despite the fact that lower loads (8 & 10 kN vs. 20kN) are 

being applied. This is a direct consequence of the fact that a beam is weaker and deflects 

more in end loading than in center loading. Like before, switching to Mg at 10 kN not 
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only results in an increase in cost but also a weight gain, thus making the switch 

unfavorable when diameter is constrained.  

 

However, in the spirit of relaxing constraints, observe what happens when we reduce the 

load 20% to 8 kN, still maintaining a 70 mm diameter. As shown by the dotted blue 

curve, the cost of switching to Mg drops 20-30% depending on deflection, making it only 

slightly more expensive than Al at 10 kN. More importantly though, the switch from Al 

10 kN to Mg 8 kN results in a weight loss. If strength was sacrificed slightly more, it’s 

conceivable that Mg cost would actually become cheaper than Al 10 kN. While 

sacrificing strength sounds inconceivable, it might actually be feasible in situations where 

the manufacturer is considering replacing structurally non-critical components, or rather 

when making a lighter car, which by virtue of weighing less, needs less strength to 

maintain its safety.  In other words, specific strength, that is strength divided by density, 

might be more important in some circumstances than absolute strength. 

 
Figure 30: Cost vs. Deflection Associated with 10 kN End Load – Constrained 6mm 
Thickness 
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Figure 30 presents the same loading scenario but instead with a constrained thickness of 

6mm. Having already established in Figure 26 the effect of higher thickness, that effect is 

omitted here. Indeed, the data behaves identically to the center loading scenario, with Al 

and Mg cost curves tracking each other closely and having a switch from Al to Mg 
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associated with a weight loss. Accordingly, if diameter can vary due to lack of package 

constraints, switching to Mg is preferable, especially if Mg can be extruded faster as 

shown earlier in Figure 27. The only main difference between this scenario and Figure 26 

is that deflection constraints are much more costly to meet in end loading than in center 

loading at 6mm thickness, as one would expect. 

 

4.7 Constant Deflection under Varying End Loads  

Figure 31: Cost vs. End Load – Constrained 70 mm Diameter 
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The final loading scenario analyzed is that of maintaining a constant deflection under 

varying end loads. Figure 31 illustrates the condition under a constrained diameter of 

70mm. With end loading being a mechanically weaker state, we consider lighter loads (8-

15 kN vs. 15-29 kN) and greater deflections (10% and 12% vs. 5%) than we did with 

center loading. Moreover, meeting a deflection constraint is much more costly for both 

Al and Mg due to the additional volume required. Like in Figure 27, it becomes 

progressively more expensive to maintain constant deflection under increasing loads, 

with Mg being more expensive than Al and also weighing more. Switching to Mg is 

clearly not favorable under constrained diameter unless we relax some constraint. As 

shown in the dotted plots in Figure 30, relaxing the deflection to just 12% results in a 19-
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33% reduction in cost and a weight savings of up to 0.23 kg over Al at 10% deflection. 

Relaxed further, these gains would no doubt increase. Hence, if an application can 

conceivably allow for small sacrifice in strength, Mg can quickly become competitive 

and even preferable to Al. Of course, we could make these same relaxations on aluminum 

and reduce its cost, but again, the focus is on making magnesium preferable to some 

baseline aluminum process. The final analysis would be that of constant thickness, but 

this presents no new information over Figure 30, so we will not consider it here.  

 

    4.8 Case Study Summary  

In general, when thickness is constrained and diameter allowed to vary, switching to Mg 

results in a weight reduction with little or no extra cost. This benefit can be enhanced by 

increasing the extrusion rate or relaxing the strength constraint on Mg. This is true for all 

three considered loading conditions. By contrast, when diameter is constrained, Mg is 

never preferable unless some constraint is relaxed, which is indeed conceivable in some 

real-life applications.  

 

With reduction in weight come lower forces in collisions, so lower strength constraints 

may be feasible. Perhaps the part is not a critical structural element, or perhaps we are 

designing a sacrificial part designed to fail or deflect in a collision. In other words, 

specific strength might be more important to the manufacturer than absolute strength. 

Additionally, in semi- or non-package constrained situations, increasing diameter may be 

an option for some parts without causing the car body and frame to be redesigned. In 

general, when facing some strength constraint, the cost and weight of Al and Mg hollow 

extrusions can always be reduced by making a thinner, larger diameter part; however, the 

degree to which this is feasible depends entirely on the package constraints imposed by 

its particular application.  

  

5 Discussion  

While this case study is undoubtedly insightful, its results must be considered within the 

context of several important limitations. These limitations arise because of the model’s 
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incredibly strong dependency on a few key cost drivers, the first of which is material 

cost. Accounting for ~70% of overall cost, material cost and hence market prices of Mg 

and Al are probably the single most important movers of the cost curves considered in the 

case study. On one hand, these prices can shift substantially over time, both in absolute 

and relative terms, so it’s incredibly important that anyone hoping to acquire useful 

results use current prices which accurately reflect their cost of production. However, it’s 

important to note that through the use of futures and forward contracts, manufacturer’s 

can lock in material prices and hedge against price increases. In this sense, using constant 

prices in the model, as we have done here, is a fair assumption for a general analysis 

given that they are reasonable in current market conditions.  

 

Secondly, as the second largest component, labor cost is critically dependent on various 

assumptions of factory labor structure, such as wages, the number of workers per line, the 

ratio of indirect to direct labor, line uptime and downtime, etc. While kept constant in this 

analysis, in reality these values can change over time depending on economic conditions, 

plant reorganization, and increasing efficiency via ‘learning’ in the production process. 

Further, assuming the use of Mg involves the installation of new machinery and 

processes, the values describing labor structure in Mg extrusion may differ from Al. 

However, given the limited information known about the Mg process, this assumption of 

equality was certainly a good one for this analysis, and results will only improve with 

better inputs.  

 

The range of reasonable values for various extrusion parameters - extrusion speed, billet 

size, and press cost - also expands the confidence interval for the results of the cost 

model.  Extrusion speed ultimately depends on the relative hardness of the material and 

die, so while we have chosen reasonable speeds for Al and Mg this analysis, in reality 

they can vary over some range depending on microstructure and composition.  Further, 

via the PressSize function, the 16.05 MN press and its associated billet was kept constant 

throughout. However, in reality a manufacturer could choose to use a larger, more 

expensive press with longer billets, which would have the effect of reducing scrap waste 

and the number of extrusions needed to meet the production volume. Additionally, a very 
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rough estimate was used for Mg press cost. Amortized over 20 years, press cost accounts 

for 3-5% of total cost, so when better Mg press data is available, it’s possible there could 

be a slight effect on Mg cost one way or the other. It’s worth mentioning that softer Mg 

can be extruded at lower pressures than Al, hence requiring less power. However, this 

difference will be relatively small, and, coupled with the fact that energy accounts for 

~1% of total cost, the implications on overall cost are minor.  

 

Having explored limitations of interpreting cost behavior, it is also important to consider 

aspects of the strength analysis which may deviate from reality. Most importantly, here 

we have compared the mechanical performance of pure Al and Mg, whereas in reality, 

Al-Mg alloys of various compositions would be used for various reasons. First of all, 

alloying allows manufacturer’s to take advantage of Mg’s light-weighting capabilities 

while still taking advantage of aluminum’s strength and inertness. While work hardening 

often provides additional strength, pure Mg is hardly ever used in demanding applications 

such as a structural member in a vehicle due to its relatively low strength and high 

reactivity [14]. While a surface oxide layer partially masks this reactivity, it is inferior 

mechanically and chemically to the Al-Mg alloys which dominate industry. Moreover, 

using alloys creates an easier transition for the production process and provides a 

manufacturer with an opportunity to sample Mg properties without full commitment. 

  

The major implication of this is that there are plenty of intermediate scenarios between 

the extremes presented in the case study. Depending on composition, Young’s modulus, 

billet price, and density can take on an entire range of values, meaning that in addition to 

the geometric, processing, strength constraints relaxed in the analysis, one can also alter 

composition in cost comparisons. By simply adding a new material to the “Material 

Data” tab of the spreadsheet, one could easily perform all the analyses described in the 

case study with an Mg-Al alloy, potentially altering some results while introducing 

insightful new ones.  

 

While alloys can improve the accuracy of model inputs, there are aspects of the model 

itself which are substantial approximations. In reality, extrusion speed and temperature 
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significantly affect the microstructure, and hence strength, of a material. To maintain 

constant microstructure and properties throughout, modern extrusion systems use 

computers to adjust temperature and speed in real-time. Too high temperatures can result 

in surface cracks, while extruding at too low temperatures results in increased pressure 

and reduced tool life [14]. Hence, cycle times and material strength can vary in ways the 

model does not account for.  

 

Broadly speaking, the practical usefulness of the three metrics of strength used in the 

model – Euler buckling load and deflection under center and end load – varies depending 

on application. For intense axial loading, in a collision for example, plastic deformation 

and fracture is almost always the dominant mode of failure. Indeed, the geometries 

considered in this analysis have too low a slenderness ratio for the Euler formula to be 

practical for ordinary design – such columns would fail by a combination of bending and 

plastic deformation [16]. Further, all three metrics of strength are highly dependent on 

end conditions which may or may not be realistic. While theoretically ‘fixed’, end 

conditions can quickly change in a high impact collision as joints fail. Further, the 

idealized point center and end loads are likely to be somewhat distributed, not to mention 

the fact that the unsupported end of a cantilever is more a theoretical construction than 

practical reality. So while interpreting results in absolute terms is a mistake, one can still 

gain insight into strength differences between materials on a relative basis. That is where 

this model provides true value. 

 

 Finally, it’s important to note that the case study kept length constant at 1m for 

simplicity, but in reality length can vary substantially. In terms of axial loading, doubling 

length quarters the critical load, while for deflection, longer members deflect more. In 

general, shorter member are stronger, so while kept constant in this study for simplicity, 

length modifications may be another avenue of optimization in some applications. Of 

course, the shorter the beam, the less practically useful the strength metrics used in the 

model will be. 
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6 Conclusions and Future Work  

In this thesis, we have developed a framework within a Process Based Cost Model of 

extrusion for understanding the strength characteristics of extruded beams in different 

loading scenarios, and further, how these characteristics, via processing parameters and 

geometry, translate into cost and weight savings. Consisting of a suite of mechanics and 

cost functions developed in Visual Basic, this framework dynamically interfaces with the 

cost model - taking as inputs material and part properties, computing dimensions subject 

to strength constraints, inputting these values into the model, and returning cost output. 

  

Through a case study, we have demonstrated this capability on a simple system which 

approximates a number of real life components in automotive applications. Specifically, 

through systematic variation of parameters and loading scenarios, we have utilized the 

‘Strength Analysis’ tab to understand the conditions in which it is cost effective for a 

manufacturer to switch from Al to Mg in order to take advantage of its light weighting 

potential. This included indentifying the key drivers of cost as well as defining how 

variations of process, strength, and geometric parameters affect the desirability of Mg 

over Al.  

  

Future work includes performing similar analysis on systems of different diameters, 

thicknesses, and lengths, as well improving the accuracy of various model inputs. 

Further, while currently constrained to three loading scenarios with either Mg or Al, new 

loading scenarios and materials could be incorporated by making minor changes to the 

code. Specifically, Mg-Al alloys would be interesting to study as well as redefining the 

model’s metric of axial strength. Indeed, pure Euler buckling is not a realistic mode of 

failure for structural members of slenderness ratio less than 50, such as those considered 

in this analysis. Great improvement can be made by replacing this strength metric with 

empirical formulae designed specifically for modeling beams of intermediate slenderness 

ratio [14]. Unfortunately, this realization was made far too late into the semester to be 

corrected in this thesis, and further, while referenced online, these empirical methods 

could not be located. Nevertheless, the methods described herein represent a substantial 

improvement in the features and practical usefulness of the MSL Extrusion cost model. 
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8 APPENDIX  
 
Mechanics Functions 
 
Public Function BucklingCalc(Material As String, DimensionToVary As String, 

DimensionGiven As Double, CriticalLoad As Double) As Double 

 

 Dim TestLength As Double 

 Dim Young As Double 

 Dim TestRad As Double 

 Dim TestRadInner As Double 

 Dim TestWall As Double 

 Dim a As Double 

 Dim b As Double 

 Dim c As Double 

 Dim d As Double 

 Dim p As Double 

 Dim q As Double 

 Dim r As Double 

 Dim Test As Double 

   

 TestLength = Application.Range("TEST_LEN") 

   

 If Material = "Al" Then 

    Young = 70 * 10 ^ 9 

 ElseIf Material = "Mg" Then 

    Young = 45 * 10 ^ 9 

 Else: BucklingCalc = CVErr(xlErrNA) 

 End If 

       

 Select Case DimensionToVary 

  

 Case "Thickness" 

  

    TestRad = DimensionGiven / 2 

    TestRadInner = (((TestRad / 1000) ^ 4 - ((CriticalLoad * 10 ^ 6 * TestLength ^ 

2) / ((Application.WorksheetFunction.Pi() ^ 3) * Young))) ^ 0.25) * 1000 

    BucklingCalc = TestRad - TestRadInner 

  

 Case "Diameter" 
'Formula for solving cubic polynomial at http://www.math.vanderbilt.edu/~schectex/courses/cubic/ 

  

    TestWall = DimensionGiven / 1000 

  

    a = 4 * TestWall 

    b = -6 * TestWall ^ 2 

    c = 4 * TestWall ^ 3 

    d = -TestWall ^ 4 - ((CriticalLoad * 10 ^ 6 * TestLength ^ 2) / 

((Application.WorksheetFunction.Pi() ^ 3) * Young)) 

  

    p = -b / (3 * a) 

    q = p ^ 3 + (b * c - 3 * a * d) / (6 * a ^ 2) 
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    r = c / (3 * a) 

  

    Test = (q - (q ^ 2 + (r - p ^ 2) ^ 3) ^ (1 / 2)) 

  

    If Test < 0 Then 

        TestRad = ((q + (q ^ 2 + (r - p ^ 2) ^ 3) ^ (1 / 2)) ^ (1 / 3) - (Math.Abs(q - 

(q ^ 2 + (r - p ^ 2) ^ 3) ^ (1 / 2))) ^ (1 / 3) + p) * 1000 

    Else: TestRad = ((q + (q ^ 2 + (r - p ^ 2) ^ 3) ^ (1 / 2)) ^ (1 / 3) + (q - (q ^ 2 

+ (r - p ^ 2) ^ 3) ^ (1 / 2)) ^ (1 / 3) + p) * 1000 

    End If 

  

    BucklingCalc = 2 * TestRad 

  

 End Select 

  

End Function 

 

 

Public Function DeflectionCalc(LoadingType As String, Material As String, 

DimensionToVary As String, DimensionGiven As Double, DeflectionPercent As 

Double, Load As Double) As Double 

  

 Dim TestLength As Double 

 Dim Young As Double 

 Dim TestRad As Double 

 Dim TestRadInner As Double 

 Dim TestWall As Double 

 Dim Deflection As Double 

 Dim a As Double 

 Dim b As Double 

 Dim c As Double 

 Dim d As Double 

 Dim p As Double 

 Dim q As Double 

 Dim r As Double 

 Dim Test As Double 

  

TestLength = Application.Range("TEST_LEN") 

Deflection = TestLength * DeflectionPercent 

   

 If Material = "Al" Then 

    Young = 70 * 10 ^ 9 

 ElseIf Material = "Mg" Then 

    Young = 45 * 10 ^ 9 

 Else: DeflectionCalc = CVErr(xlErrNA) 

 End If 

  

 Select Case DimensionToVary 

  

 Case "Thickness" 

  

  TestRad = DimensionGiven / 2 
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  If LoadingType = "End" Then 

   TestRadInner = (((TestRad / 1000) ^ 4 - ((4 * Load * 10 ^ 3 * TestLength ^ 3) / 

(3 * Application.WorksheetFunction.Pi() * Young * Deflection))) ^ 0.25) * 1000 

   DeflectionCalc = TestRad - TestRadInner 

  ElseIf LoadingType = "Center" Then 

   TestRadInner = (((TestRad / 1000) ^ 4 - ((Load * 10 ^ 3 * TestLength ^ 3) / (3 * 

Application.WorksheetFunction.Pi() * Young * Deflection))) ^ 0.25) * 1000 

   DeflectionCalc = TestRad - TestRadInner 

  Else: DeflectionCalc = CVErr(xlErrNA) 

  End If 

  

 Case "Diameter" 

  

  'Formula for solving cubic polynomial at http://www.math.vanderbilt.edu/~schectex/courses/cubic/ 

  TestWall = DimensionGiven / 1000 

  

  a = 4 * TestWall 

  b = -6 * TestWall ^ 2 

  c = 4 * TestWall ^ 3 

  

  If LoadingType = "End" Then 

   d = -TestWall ^ 4 - ((4 * Load * 10 ^ 3 * TestLength ^ 3) / (3 * 

Application.WorksheetFunction.Pi() * Young * Deflection)) 

  ElseIf LoadingType = "Center" Then 

   d = -TestWall ^ 4 - ((Load * 10 ^ 3 * TestLength ^ 3) / (3 * 

Application.WorksheetFunction.Pi() * Young * Deflection)) 

  Else: DeflectionCalc = CVErr(xlErrNA) 

  End If 

  

  p = -b / (3 * a) 

  q = p ^ 3 + (b * c - 3 * a * d) / (6 * a ^ 2) 

  r = c / (3 * a) 

  

  Test = (q - (q ^ 2 + (r - p ^ 2) ^ 3) ^ (1 / 2)) 

  

  If Test < 0 Then 

     TestRad = ((q + (q ^ 2 + (r - p ^ 2) ^ 3) ^ (1 / 2)) ^ (1 / 3) - (Math.Abs(q - (q 

^ 2 + (r - p ^ 2) ^ 3) ^ (1 / 2))) ^ (1 / 3) + p) * 1000 

  Else: TestRad = ((q + (q ^ 2 + (r - p ^ 2) ^ 3) ^ (1 / 2)) ^ (1 / 3) + (q - (q ^ 2 + 

(r - p ^ 2) ^ 3) ^ (1 / 2)) ^ (1 / 3) + p) * 1000 

  End If 

  

  DeflectionCalc = 2 * TestRad 

   

 End Select 

  

End Function 

 

 

Public Function Deflection(LoadingType As String, Material As String, Length As 

Double, Thickness As Double, Diameter As Double, Load As Double) As Double 

  

 Dim Moment As Double 
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 If Material = "Al" Then 

    Young = 70 * 10 ^ 9 

 ElseIf Material = "Mg" Then 

    Young = 45 * 10 ^ 9 

 Else: Deflection = CVErr(xlErrNA) 

 End If 

  

 Moment = (Application.WorksheetFunction.Pi / 4) * ((Diameter / 2 / 1000) ^ 4 - 

((Diameter / 2 - Thickness) / 1000) ^ 4) 

 

 If LoadingType = "End" Then 

    Deflection = (Load * 10 ^ 3 * Length ^ 3) / (3 * Young * Moment) 

 ElseIf LoadingType = "Center" Then 

     Deflection = (Load * 10 ^ 3 * Length ^ 3) / (12 * Young * Moment) 

 Else: Deflection = CVErr(xlErrNA) 

 End If 

  

End Function 

 
 

Public Function Load(LoadingType As String, Material As String, Thickness As Double, 

Diameter As Double, Length As Double, DeflectionPercent As Double) As Double 

 

 Dim Moment As Double 

 Dim Deflection As Double 

 

 Deflection = Length * DeflectionPercent 

  

 If Material = "Al" Then 

    Young = 70 * 10 ^ 9 

 ElseIf Material = "Mg" Then 

    Young = 45 * 10 ^ 9 

 Else: Load = CVErr(xlErrNA) 

 End If 

  

 Moment = (Application.WorksheetFunction.Pi / 4) * ((Diameter / 2 / 1000) ^ 4 - 

((Diameter / 2 - Thickness) / 1000) ^ 4) 

 

 If LoadingType = "End" Then 

    Load = ((3 * Deflection * Young * Moment) / (Length ^ 3)) / 10 ^ 3 

 ElseIf LoadingType = "Center" Then 

     Load = ((12 * Deflection * Young * Moment) / (Length ^ 3)) / 10 ^ 3 

 Else: Deflection = CVErr(xlErrNA) 

 End If 

 

End Function 

 

 

Public Function Weight(Material As String, Thickness As Double, Diameter As Double, 

Length As Double) As Double 
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 Dim Density As Double 

   

 If Material = "Al" Then 

 Density = 2700 

 Else: Density = 1800 

 End If 

  

 Weight = Density * Application.WorksheetFunction.Pi() * (((Diameter / 2) ^ 2 - 

(Diameter / 2 - Thickness) ^ 2) / (1000 ^ 2)) * Length 

 

End Function 
 

 

Cost Functions 
 
Public Function CostCalcBuckling(Material As String, DimensionToVary As String, 

DimensionGiven As Double, CriticalLoad As Double, CostUnit As String) As Double 

 

 Dim Diameter As Double 

 Dim Thickness As Double 

  

 Select Case DimensionToVary 

 

 Case "Thickness" 

  

 Diameter = DimensionGiven 

 Thickness = BucklingCalc(Material, DimensionToVary, Diameter, CriticalLoad) 

 Application.Range("TEST_DIA").Value = Diameter 

 Application.Range("TEST_WALL").Value = Thickness 

  

 If CostUnit = "kg" Then 

    CostCalcBuckling = Application.Range("TOTAL_FABRICATION_COST_UNIT") / 

Application.Range("TEST_WT") 

 ElseIf CostUnit = "unit" Then 

    CostCalcBuckling = Application.Range("TOTAL_FABRICATION_COST_UNIT") 

 Else: CostCalcBuckling = CVErr(xlErrNA) 

 End If 

  

 Case "Diameter" 

  

 Thickness = DimensionGiven 

 Diameter = BucklingCalc(Material, DimensionToVary, Thickness, CriticalLoad) 

 Application.Range("TEST_DIA").Value = Diameter 

 Application.Range("TEST_WALL").Value = Thickness 

  

 If CostUnit = "kg" Then 

    CostCalcBuckling = Application.Range("TOTAL_FABRICATION_COST_UNIT") / 

Application.Range("TEST_WT") 

 Else: CostCalcBuckling = Application.Range("TOTAL_FABRICATION_COST_UNIT") 

 End If 

  

 End Select 
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End Function 
 
 
Public Function CostCalcDeflection(LoadingType As String, Material As String, 

DimensionToVary As String, DimensionGiven As Double, DeflectionPercent As 

Double, Load As Double, CostUnit As String) As Double 

 

 Dim Diameter As Double 

 Dim Thickness As Double 

  

 Select Case DimensionToVary 

 

 Case "Thickness" 

  

 Diameter = DimensionGiven 

 Thickness = DeflectionCalc(LoadingType, Material, DimensionToVary, Diameter, 

DeflectionPercent, Load) 

 Application.Range("TEST_DIA").Value = Diameter 

 Application.Range("TEST_WALL").Value = Thickness 

 Application.Range("FORCE").Value = Load 

  

 If CostUnit = "kg" Then 

    CostCalcDeflection = Application.Range("TOTAL_FABRICATION_COST_UNIT") / 

Application.Range("TEST_WT") 

 ElseIf CostUnit = "unit" Then 

    CostCalcDeflection = Application.Range("TOTAL_FABRICATION_COST_UNIT") 

 Else: CostCalcDeflection = CVErr(xlErrNA) 

 End If 

  

 Case "Diameter" 

  

 Thickness = DimensionGiven 

 Diameter = DeflectionCalc(LoadingType, Material, DimensionToVary, Thickness, 

DeflectionPercent, Load) 

 Application.Range("TEST_DIA").Value = Diameter 

 Application.Range("TEST_WALL").Value = Thickness 

 Application.Range("FORCE").Value = Load 

  

 If CostUnit = "kg" Then 

    CostCalcDeflection = Application.Range("TOTAL_FABRICATION_COST_UNIT") / 

Application.Range("TEST_WT") 

 Else: CostCalcDeflection = Application.Range("TOTAL_FABRICATION_COST_UNIT") 

 End If 

  

 End Select 

 

End Function 
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Cost Calculation Subroutines 
 

Sub PerformBucklingCostCalculations() 

 

Dim CostCell As String 

Dim ForceCell As String 

Dim DataPoints As Integer 

Dim Index As Integer 

Dim ComputedCost As Double 

Dim Material As String 

Dim ComputedDimension As String 

Dim GivenDimension As Double 

Dim CostUnit As String 

 

CostCell = Application.Range("TOP_COST_CELL").Value 

ForceCell = Application.Range("TOP_FORCE_CELL").Value 

DataPoints = Application.Range("DATA_POINTS").Value 

CostUnit = Application.Range("COST_UNIT").Value 

 

Material = Application.Range("TEST_MAT_NAME").Value 

ComputedDimension = Application.Range("COMPUTED_DIM").Value 

GivenDimension = Application.Range("GIVEN_DIM").Value 

 

Index = 0 

 

Do While Index < DataPoints 

 

ComputedCost = CostCalcBuckling(Material, ComputedDimension, GivenDimension, 

Application.Range(ForceCell).Offset(Index, 0), CostUnit) 

Application.Range(CostCell).Offset(Index, 0).Value = ComputedCost 

Application.Range(CostCell).Offset(Index, 0).Font.ColorIndex = 5 

Index = Index + 1 

 

Loop 

 

End Sub 
 

 

Sub PerformDeflectionCostCalculations() 

 

Dim CostCell As String 

Dim DeflectionOrLoadCell As String 

Dim DataPoints As Integer 

Dim Index As Integer 

Dim ComputedCost As Double 

Dim Material As String 

Dim ComputedDimension As String 

Dim GivenDimension As Double 

Dim CostUnit As String 

Dim LoadingType As String 

Dim Load As Double 

Dim Deflection As Double 
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CostCell = Application.Range("TOP_COST_CELL2").Value 

DataPoints = Application.Range("DATA_POINTS2").Value 

CostUnit = Application.Range("COST_UNIT2").Value 

LoadingType = Application.Range("LOADING_TYPE").Value 

Material = Application.Range("TEST_MAT_NAME2").Value 

ComputedDimension = Application.Range("COMPUTED_DIM2").Value 

GivenDimension = Application.Range("GIVEN_DIM2").Value 

  

DeflectionOrLoadCell = 

Application.Range("TOP_DEFLECTION_OR_LOAD_CELL").Value 

Index = 0 

 

If Application.Range("FIXED_PARAMETER").Value = "Load" Then 

 Load = Application.Range("FIXED_PARAMETER_VALUE").Value 

  

 Do While Index < DataPoints 

 

 ComputedCost = CostCalcDeflection(LoadingType, Material, ComputedDimension, 

GivenDimension, Application.Range(DeflectionOrLoadCell).Offset(Index, 0), Load, 

CostUnit) 

 Application.Range(CostCell).Offset(Index, 0).Value = ComputedCost 

 Application.Range(CostCell).Offset(Index, 0).Font.ColorIndex = 5 

 Index = Index + 1 

 

 Loop 

 

ElseIf Application.Range("FIXED_PARAMETER").Value = "Deflection" Then 

 Deflection = Application.Range("FIXED_PARAMETER_VALUE").Value 

  

 Do While Index < DataPoints 

  

 ComputedCost = CostCalcDeflection(LoadingType, Material, ComputedDimension, 

GivenDimension, Deflection, Application.Range(DeflectionOrLoadCell).Offset(Index, 

0), CostUnit) 

 Application.Range(CostCell).Offset(Index, 0).Value = ComputedCost 

 Application.Range(CostCell).Offset(Index, 0).Font.ColorIndex = 5 

 Index = Index + 1 

  

 Loop 

  

Else: 

End If 

 

End Sub 

 
 
Press Size Determination 
 
Public Function PressSize() As Double 

     

 Dim Part As Integer 

 Dim Mat As Integer 
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 Dim Index As Integer 

 

 Dim Force As Double 

 Dim Pressure As Double 

 Dim ShapeFactor As Double 

 Dim ReductionRatio As Double 

 Dim BilletLength As Double 

 Dim BilletDiameter As Double 

 Dim Circum As Double 

 Dim CircumEquiv As Double 

 Dim BilletArea As Double 

 Dim FinalArea As Double 

  

 Dim ExtrusionConstant As Double 

 

 Dim Compatible As Boolean 

 

    Compatible = False 

    Part = Application.Range("PART") 

    Mat = Application.Range("MAT") 

    Index = 3 

     

    PressSize = Application.Range("PRESS_TABLE_2").Cells(1, Index) 

     

    Do While Compatible = False 

         

     BilletDiameter = Application.WorksheetFunction.HLookup(PressSize, 

Application.Range("PRESS_TABLE_2"), 2) 

      

     BilletArea = Application.WorksheetFunction.Pi * (BilletDiameter / 2) ^ 2 

     FinalArea = Application.WorksheetFunction.VLookup(Part, 

Application.Range("PART_DAT"), 12) 

                

     ReductionRatio = BilletArea / FinalArea 

      

     Circum = Application.WorksheetFunction.VLookup(Part, 

Application.Range("PART_DAT"), 10) 

     CircumEquiv = Application.WorksheetFunction.VLookup(Part, 

Application.Range("PART_DAT"), 11) 

      

     ShapeFactor = 0.98 + 0.02 * (Circum / CircumEquiv) ^ 2.25 

     ExtrusionConstant = Application.WorksheetFunction.VLookup(Mat, 

Application.Range("MAT_DAT"), 10) 

      

     Pressure = ShapeFactor * ExtrusionConstant * Log(ReductionRatio) 

     Force = Pressure * BilletArea 

           

     If Force < PressSize Then 

        Compatible = True 

        Exit Do 

         

        Else: 

            Index = Index + 1 
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            PressSize = Application.Range("PRESS_TABLE_2").Cells(1, Index) 

     End If 

           

    Loop 

         

End Function 


