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Abstract 
 
A series of case studies on raw materials inventory strategy for both wrought and cast 
aluminum alloy productions were conducted under recourse-based modeling framework 
with the explicit considerations of the demand uncertainty compared to the traditional 
strategy based on point forecast of future demand. The result shows significant economic 
and environmental benefits by pre-purchasing excess amount of cheaper but dirtier 
secondary raw materials to hedge the riskier higher-than-expected demand scenario. 
Further observations demonstrate that factors such as salvage value of residual scraps, 
cost advantage of secondary materials over primary materials, the degree of the demand 
uncertainty, etc. all have direct impacts on the hedging behavior. An analytical study on a 
simplified case scenario suggested a close form expression to well explain the hedging 
behavior and the impacts of various factors observed in case studies.  
 
The thesis then explored the effects of commonality shared by secondary materials in 
their application in multiple final products. Four propositions were reached. 
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1 Introduction 

1.1 Metal Recycling 

Recycling is crucial for the sustainability of non-renewable metal resources. Fortunately, 

recycled scrap metals possess several intrinsic advantages over the primary materials for 

which they substitute; these advantages create incentives for recycling. 

First of all, most of the energy required for the production of primary aluminum is 

embodied in the metal itself. Consequently, the energy needed to melt aluminum scrap is 

only a fraction of that required for primary aluminum production. Recycling of aluminum 

products needs only 5% of the energy needed for primary aluminum production (2008). It 

is estimated that recycling of aluminum saves up to 6 kg of bauxite, 4 kg of chemical 

products, and over 13 kWh of electricity, per kilogram of aluminum recycled (2005). The 

energy consumption difference between the production of primary metals and the 

recycling of secondary metals is shown in Table 1-1 and graphically in Figure 1-1. Given 

the considerable positive environmental aspects of aluminum recycling, in addition to its 

prevailing consumption globally, this thesis focuses on the recycling of this specific 

metal. However, the approach and conclusions should be applicable to other metals, or 

more broadly, natural resources.   

In addition to the energy advantage, recycling of aluminum products emits only 5% of 

the greenhouse gases emitted in primary aluminum production. Recycling of old scrap 

now saves an estimated 84 million tons of greenhouse gas emissions per year. Since its 

inception, the recycling of old scrap has already reduced CO2 emissions associated with 

aluminum production by over one billion metric tons (2008).  
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Table 1-1 Estimated Energy Savings Associated with Recycling Metals (Roberts 1983) 

Metal  Percent of Embodied Energy Saved 
Aluminum  82 
Copper  69 
Zinc  38 
Lead  97 
Iron, Carbon Steel, Other Ferrous  39 
Stainless Steel  20 

 

 

 

Figure 1-1 Production energy of various metals from primary or secondary sources 
(Keoleian, Kar et al. 1997) 

In the US, over the last four decades, aluminum secondary production has risen from 

178,000 metric tons per year to over 2,930,000 metric tons per year (Kelly et al., 2004), a 

growth rate was more rapid than any other major metal over the same period. Recycling 

is a major aspect of aluminum use, with more than a third of all the aluminum currently 

produced globally originating from recycled metals. The aluminum recycling industry 

has effectively tripled its output from 5 million tons in 1980 to over 16 million tons in 

2006. During the same time period primary metal use has grown from 15 to 30 million 
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tons. The proportion of recycled aluminum to the global demand for the metal has grown 

from less than 20% in 1950 to approximately 33% in 2006. Of an estimated total of over 

700 million tons of aluminum produced in the world since commercial manufacture 

began in the 1880s, about three quarters of that total is still in productive use, at least in 

part thanks to the recycling industry. The recycling rate and scrap recovery rate in the US 

are shown in Figure 1-2. Despite the significant increase in the recycling rate, the 

aggregate aluminum recycling rate still seldom exceeds 50%. The goal of this work is to 

identify approaches that could increase the financial incentives to secondary aluminum 

consumers to utilize more recycled aluminum.   

 

Figure 1-2 Recycling rate (old and new scrap consumed divided by total metal consumption) 
and scrap recovery (scrap consumed divided by total scrap generated) for the past 50 years 
[Kelly et al., 2004].  

Adding incentives to increase recycling is the same as reducing the disincentives to 

secondary materials consumers to collect and process secondary material ([Goodman et 

al., 2005] and [Wernick and Themelis, 1998]). A significant set of economic 

disincentives emerges due to various types of operational uncertainty that confront 

secondary processors ([Khoei et al., 2002], [Peterson, 1999] and [Rong and Lahdelma, 

2006]).  For instance, relevant sources of operational uncertainty include facts that a 

supplier may deliver raw materials late or not at all; warehouse workers may go on strike; 
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items in the inventory may be of poor quality; demand for your product may go up or 

down; the composition of the raw materials might vary, etc. These uncertainties have the 

largest adverse effect on those furthest from the customer, e.g. materials producers, due 

to the feedback mechanisms inherent in typical market-based supply-chains (Lee et al., 

1997.) An appreciation of the specific uncertainties facing metal processors can be gained 

by examining the historical volatility of aggregate US demand for a number of basic 

metals.  Figure 1-3 illustrates annual demand from 1970 to 2000. For all of the metals 

plotted, there is significant variability in consumption from period to period with variance 

ranging from 5% to 20%. (Kelly, Buckingham et al. 2005). Nevertheless, despite real 

uncertainties, definite business-critical decisions must be made on a daily basis.  
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Figure 1-3 Year-over-year change in US apparent consumption of aluminum, copper, iron, 
steel and nickel (Kelly, Buckingham et al. 2005). 

 

1.2 Previous Work on Operational Uncertainty 

A range of research activities have been motivated by the significant environmental and 

economic benefits of secondary materials recycling. This research can be broadly 

classified into two categories: technological evolution and new decision-making methods.  

On the technological side, the focus has been on developing new equipment and 

processing methods to improve the quality of scrap while minimizing its variability, such 

as sorting technologies that are being developed to control variability in chemical 
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compositions of scrap streams. (Maurice, Hawk et al. 2000; Gesing, Berry et al. 2002; 

2003; 2003; Mesina, Jong et al. 2004; Reuter, Boin et al. 2004). For instance, Maurice et 

al suggest a thermo-mechanical treatment to establish conditions that cause fragmentation 

of cast material, while wrought material, having lost much less of its toughness, merely 

deforms. The two types of product could then be separated by simple sizing methods 

(Veit 2004).  

Similarly, there are many research activities exploring improved decision-making 

methods concerning accommodating various operational uncertainties. For example, 

Gaustad et al explored the use of a chance-constrained optimization method to explicitly 

consider the scrap’s compositional uncertainty and showed that it is possible to increase 

the use of recycled material without increasing the likelihood of batch errors compared to 

a conventional deterministic method.   

Other work has focused on decisions of individual processors. One approach considers 

the questions of whether and to what extent specific technological or operational options 

should be employed to reduce costs or increase profits. (Lund, Tchobanoglous et al. 1994; 

Stuart and Lu 2000; Stuart and Qin 2000) Another approach considers the identity and 

quantity of raw materials that should be purchased and allocated to production. (Shih and 

Frey; Cosquer and Kirchain) Similarly, analytical models combined with simulations of 

materials flows have been applied to guide the allocation decisions of materials across the 

processors within an entire recycling system (van Schaik, Reuter et al. 2002; van Schaik 

and Reuter 2004; 2004b). Nevertheless, all the work above modeled future demand 

deterministically. This thesis will model and analyze the environmental and economic 

impacts with the demand uncertainty treated stochastically. 
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There is other work that folds in demand uncertainties into decision-making, but this 

concentrates mainly on reduction in total demand uncertainty and takes the residual 

uncertainty as irreducible systematic risk. For example, Kunnumkal et al suggested an 

operating service agreement between suppliers and customers that requires the supplier to 

provide customers with incentives to minimize their demand uncertainty through 

activities such as acquiring advance demand information, employing more sophisticated 

forecasting techniques, or smoothing product consumption. The resulting reduction of the 

demand uncertainty brings benefits to both parties. This thesis looks into a method to 

gain such benefits under an operational environment with irreducible demand uncertainty. 

The operations management literature has also examined the impact of uncertain demand 

on a range of manufacturing decisions. A particularly relevant concept, “safety stock,” 

was studied extensively in the field of inventory management and product designs as 

early as the 1950s.  “Safety stock” is a term used to describe a level of stock that is 

maintained above the expected stock requirement to buffer against stock-outs. Safety 

stock, or buffer stock, exists to counter uncertainties in supply and demand (Atkins 2005). 

Safety stock is held when an organization cannot accurately predict demand and/or lead 

time for a product. For example, if a manufacturing company were to find itself 

continually running out of inventory, it would determine that there is a need to keep some 

extra inventory on hand so that it could meet demand while the main inventory is 

replenished.  In other words, maintaining a stock of components greater than that dictated 

by the expected demand (that is, a safety stock) can have production service and 

economic advantages.(Arrow, Harris et al. 1951; Dvoretzky, Kiefer et al. 1952; Clark and 

Scarf 1960) Subsequent work has shown that common components (i.e., components 
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shared by multiple products) allow service levels1 to be maintained with reduced safety 

stock. (Dogramaci 1979; Collier 1982; Baker, Magazine et al. 1986; Graves 1987) These 

principles have been applied to nearly all forms of operations, manufacturing and service, 

as well as supply chain management and product or system design.(Guide Jr and 

Srivastava 2000) However, across all of the cases identified by the author, models and 

insights have focused on products made of discrete components. Recently, this work has 

been extended to include cases where some amount of component substitution is possible 

(i.e., where more than one component can meet the production demands for a single 

product or multiple products). (Bassok, Anupindi et al. 1999; Geunes 2003; Cai, Chen et 

al. 2004; Gallego, Katircioglu et al. 2006)  However, reported work is limited to cases 

where the number of combinations of components that can produce the desired finished 

good is finite. For materials production, there is an infinitely continuous number of 

combinations of raw materials that can be used to make a finished good that still satisfies 

specifications. Effectively, there is a substitute for nearly every raw material in nearly 

every product with some combination of other raw materials. As a consequence, it is not 

possible to directly apply the methods or insights developed to-date to materials 

production decisions. 

To examine the implications of demand uncertainty within materials production, this 

thesis work develops a schematic analytical framework that explicitly comprehends the 

                                                            
1 Service level is measure of performance of an inventory system. It measures the probability that all 
customer orders arriving within a given time interval will be completely delivered from stock on hand, i.e. 
without delay, or measures the proportion of total demand within a reference period which is delivered 
without delay from stock on hand. 
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impact of demand uncertainty 2 in the context of materials production from primary and 

secondary raw materials.  The specific modeling method applied is a linear recourse-

based optimization model.  The results of this model are contrasted against the results of 

more traditional scrap management decision-making in which forecasts are formed using 

a deterministic framework.   

Methods that comprehend uncertainty – whether they be based on models, simulations, 

analysis, or notional frameworks – are always more analytically demanding. However, 

such methods have been shown in a range of contexts to enable more effective or 

efficient use of resources – capital, natural and financial. (previously cited references on 

manufacturing safety stocks as well as Shih and Frey 1995; Geldof 1997; Al-Futaisi and 

Stedinger 1999; Gardner and Buzacott 1999; Ralls and Taylor 2000 and the balance of  

papers within the special issue of Conservation Biology; Skantze and Ilic 2001; Peterson, 

Cumming et al. 2003; de Neufville 2004) Through the use of the recourse-based model, 

this thesis explores the extent to which and the contexts in which such benefits exist for 

materials production.  

In Chapter 2, the modeling framework will be built up, which will be used as a major tool 

to conduct a general case study in Chapter 3 to show the benefits of the approach. In 

order to better understand the benefits, an important feature on multiple products 

portfolio is studied in Chapter 4 compared to single product portfolios. An analytical 

                                                            
2 Notably, the magnitude of product demand is only one form of uncertainty that confronts secondary 
material producers. Others include quantity of available supplies, the composition of delivered raw 
materials, and the pricing of both raw materials and salable products. The method presented herein is 
readily extensible to address at least two of these – uncertainty in availability and prices. Considerations 
of raw material compositional uncertainty require other, non‐linear modeling methods. 
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expression for the hedging ratio with a simplified case was derived and discussed in 

Chapter 5 which is well in line with the modeling results.  
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2 Modeling Framework 

This chapter is devoted to establishing a recourse-based model framework with the 

explicit consideration of demand uncertainty that can identify driving forces for 

improvement in scrap consumption by secondary metal producers. 

Traditionally, metal producers, purchase scrap based on point forecasts of the demand for 

future periods. In contrast, the model built up in this chapter will take into account the 

uncertain demand. The detailed comparisons in the case study in the next chapter will 

examine the benefits of such scrap purchasing strategy change. Case results will show 

that alloy production planning solely based on expected demand leads to more costly 

production and less scrap usage on average than planning derived from more explicit 

treatment of uncertainty. The short but intuitive explanation is that the later approach 

utilizes more information, i.e., demand variance, by pricing in the benefits/penalties 

associated with all possible demand scenarios. The benefits will be further studied and 

expressed analytically in chapter 4 in a rigorous form.  

2.1 Overview of Recourse Modeling 

The most widely applied and studied stochastic programming models are two-stage linear 

programs. In such models, the decision maker is represented as taking some action in a 

first stage, after which a random event occurs affecting the implications of the first-stage 

decision. A recourse decision can then be made in the second stage that attempts to 

compensate for negative effects that might have been experienced as a result of the first-

stage decision and the revealed future conditions. The output from such an optimization 

model is a single first-stage policy and a collection of recourse decisions (a decision rule) 
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defining which second-stage action should be taken in response to each random outcome 

(Petruzzi and Dada 2001; Cattani, Ferrer et al. 2003). This methodology can be applied 

towards a wide variety of problems including resource planning, financial planning, and 

even communication network design (Martel and Price 1981; Growe, Romisch et al. 1995; 

Kira, Kusy et al. 1997; Dupacova 2002). In a simple two-stage model as in our case, at 

stage one a set of decision needs to be made to prepare for a given stochastic event. After 

the event happens, i.e. the stochastic process ends up with a deterministic outcome, a 

corrosponding set of stage-two decision will be made to accomodate it. In the context of 

our case, at the stage-one time point, the producers have to pre-purchase an amount of 

various scraps, before demand from downstream consumers is known. The scrap 

materials pre-purchasing strategy here is the stage-one priori decision based on all 

possible demands scenarios. When orders from aluminum alloy consumers arrive (i.e. the 

previously uncertain demand data are revealed), a set of posteriori raw materials 

(primaries and alloying element) purchasing plans need to be made accordingly. This 

decision making scheme for a two-stage context is illustrated in Figure 2-1, in which 

references for the specifics of a case to be described below are shown in brackets.   
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Figure 2-1.  Schematic representation of a two-stage recourse model. Specific decisions for 
the case analyzed in this paper are shown at bottom. 

The general objective function for a recourse problem consists of two parts shown as the 

following.  

),,(),( 21 DpCgDCf +  

Eq 2-1 

In Eq 2-1, the contribution from stage one to the objective function is given by the 

function f(.).  D1 is the vector of stage-one decision variables – the attributes that 

characterize quantitatively the state of the decision.  The contribution from stage two to 

the objective function is given by the function g(.).  D2 is the vector of stage-two recourse 

variables over all possible outcomes and p is the vector of the probabilities of those 

outcomes.  The overall cost impact of the recourse decisions to the overall objective are 

weighted by those probabilities.  In other words, the objective is an expected objective 

rather than a deterministic objective.  C is the cost vector whose aggregate contribution to 

the objective function is being maximized or minimized in an optimization problem.  In 

addition, within the model, various constraints are imposed that must be satisfied for all 

TimeTime

= Outcome Node

= Decision Node

(Scrap Pre-Purchases) (Potential Demand Outcomes) (Primaries & Alloying 
Elements Purchases)

Stage One Decisions Uncertain Outcomes Stage Two Decisions
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stage decisions.  Such constraints allow the model to reflect more accurately case specific 

conditions. 

2.2 Recourse Model with Demand Uncertainty for Alloy Producers 

A linear programming model is employed with a recourse framework for the cost of alloy 

production utilizing both scrap and primary raw materials. The mathematical definition of 

the model is given in Eq 2-3 to Eq 2-8. The goal of this model is to minimize the overall 

expected production costs of meeting various finished goods demand through an optimal 

choice of raw material purchases and allocations.  By accounting for the probabilities and 

magnitude of demand variations, the model optimizes the cost of every possible demand 

scenario weighted by the likelihood of those scenarios. The primary outcome from such a 

model will define both a scrap pre-purchasing strategy as well as a set of production 

plans (including primary and alloying element purchasing schedules) for each demand 

scenario.  Effectively, this provides an initial strategy and a dynamic plan for all known 

events. The variables to solve for are D1
s, D1

sfz and D2
pfz which will be defined 

subsequently together with other notations. 

Minimize: 

Eq 2-2  1 2

, , ,
s s p z pfz salv s z sz

s p f z s z
C D C P D P C P R+ −∑ ∑ ∑   

subject to 

Eq 2-3  ss AD ≤1
 

The amount of residual scrap for each scenario is calculated as: 
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Eq 2-4  
∑−=

f
sfzssz DDR 11

 

For each demand scenario z there are scrap supplies constraints as determined by the 

amount of scrap pre-purchased,  

Eq 2-5  

11
s

f
sfz DD ≤∑

  

Eq 2-5 enforces the aforementioned condition that scrap materials must be ordered before 

final production. As such, at production time, no more scrap can be used than was 

ordered. Similarly, a production constraint exists for each scenario, quantifying how 

much of what alloy must be produced: 

Eq 2-6  1 2
sfz pfz fz fz

s p

D D B M+ = ≥∑ ∑  

For each alloying element c, the composition of each alloy produced must meet 

production specifications (Datta 2002): 

Eq 2-7  
fcfzpc

p
pfz

s
scsfz UBUDUD ≤+ ∑∑ 21

 

Eq 2-8  
fcfzpc

p
pfz

s
scsfz LBLDLD ≥+ ∑∑ 21

 

All other variables are defined below: 

Rsz = Residual amount of scrap s unused in scenario z 

Cs = unit cost ($/t) of scrap material s  

Cp  = unit cost of primary material p  
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D1
s  = amount (kt) of pre-purchased scrap material s 

Pz  = probability of occurrence for demand scenario z  

Psalv  = salvage value out of the original value of the residual scrap materials   

D2
pfz = amount of primary material p to be acquired on demand for the production of 

finished good f under demand scenario z 

As  = amount of scrap material s available for pre-purchasing 

D1
sfz = amount of scrap material s used in making finished good f under demand scenario 

z 

Bfz  = amount of finished good f produced under demand scenario z 

Mfz  = amount of finished good f demanded under demand scenario z 

Usc  = max. amount (wt. %) of element c in scrap material s 

Lsc  = min. amount of element c in scrap material s 

Upc  = max. amount of element c in primary material p 

Lpc  = min. amount of element c in primary material p 

Ufc  = max. amount of element c in finished good  f 

Lfc  = min. amount of element c in finished good f 

Notably, in the model formulation shown above, the total cost includes those incurred by 

scrap and primary materials, and excludes the salvage value percentage Psalv of those 
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residual scrap materials if any. Residual scrap occurs when the demand was insufficient 

to consume all of the scrap which was pre-purchased in stage one.  It is critical to note 

that residual scrap that was pre-purchased has embodied value.  It can be resold or used 

for future production.  In deterministic analyses, no unused scrap will ever be purchased 

since any unneeded scrap will simply drive up costs, making its existence irrational.  In 

the stochastic environment, some extra scrap might be pre-purchased that will be useful 

on average but will lead to unused scrap in certain scenarios. To get a reasonable estimate, 

an assumption has been made that the salvage value will be at a discount to the cost of 

acquiring that scrap material.  The discount is assumed to be 5% in most of the following 

case study scenarios if not specified to be different one. One interpretation of this 

discount is time value of money.  Another is the cost of storage of this unused material.  

In future work the impact of this parameter should be quantified separately and more 

precisely.  To be complete, it should also be noted that the salvage value is not always at 

a discount to the original cost of acquisition.  In a rising scrap price environment or tight 

supply market (Gesing 2002), the rise in price can more than offset factors such as time 

value of money or cost of storage.  The objective function also factors in the probabilistic 

nature of the demand outcomes.  This modifies the effects of expected primary usage as 

well as the salvage value of unused scraps.   
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3 Case Study 

3.1 Case Description 

With the modeling framework established in the last chapter, the usefulness of the above 

formulation can be more clearly shown through its application in a case study.  

Specifically, the cases examine the purchasing and production decisions of a secondary 

remelter. The question being asked is what raw materials should be purchased now and at 

production time and how should these be mixed to produce finished goods demanded 

(ordered) by the customer. More generally, this case is used to explore the ability of this 

modeling framework to provide novel insights for the management of secondary 

resources. 

For the purposes of the case analysis while keeping the generality, we simultaneously 

consider two production portfolios. One consists of four of the most popular cast Al 

alloys (319, 356, 380 and 390); the other includes four popular wrought Al alloys (3105, 

5052, 6061 and 6111). These alloys were chosen because of their prevalence within 

overall industry production and should be illustrative of results for similar alloys. In 

addition to a full complement of primary and alloying elements, the modeled producer 

has available five post consumer scraps from which to choose. Prices and compositions 

used within the model for both input materials and the finished alloy products are 

summarized in Table 3.1, II and III, respectively. Notably, the case examines production 

for two portfolios of four finished goods (cf. Table 3.3) from twelve raw materials (cf. 

Table 3.1) – five scrap and seven primary materials. Average prices on primaries as well 

as recent prices on alloying elements were taken from the U.S. Geological Survey. (2005) 
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The scrap prices were quoted from globlescrap.com. The scraps types and compositional 

information are taken from studies by Gorban reflecting scrap materials that might be 

expected to derive from the automobile. (Gorban, Ng et al. 1994) Finished goods 

compositional specifications are based on international industry specifications. (Datta 

2002) Base case salvage value of any residual scrap, S, is assumed to by 95% of original 

value unless specified. 

Table 3.1.  Prices of raw materials used for case analysis 

Primary & Elements Cost / T Scrap Materials 
Cost / T 

P0305 $2,750 5000 Series Scrap $2,420 

Silicon 2,310 Litho Sheets 2,250 

Manganese 4,950 Mixed Castings 1,870 

Iron 660 UBC 1,000 

Copper 7,238 Painted Siding 2,178 

Zinc 3,322   

Magnesium 4,400   

 

Table 3.2.  Compositions of scrap materials used for case analysis (from (Gorban, Ng et al.)  
“Year 2000” vehicle) 

Raw Materials 

Average Compositions (wt. %) 

Si Mg Fe Cu Mn Zn 

5000 Series Scrap 
0.23 1.88 0.38 0.08 0.45

0.19 

Litho Sheets 
0.60 0.00 0.64 0.13 0.64

0.08 

Mixed Castings 
10.13 0.23 0.83 2.63 0.38

0.90 

UBC 
0.23 0.98 0.38 0.15 0.83

0.04 

Painted Siding 
0.75 0.45 0.60 0.60 0.38

0.38 
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Table 3.3.  Finished goods chemical specifications used for case analysis  (Datta) 

Finished Goods  Si Mg Fe Cu Mn 
Zn 

Cast Finished Goods Portfolio 

319 
Min 

6.25 0.08 0.75 3.75 0.38
0.75 

Max
5.75 0.03 0.25 3.25 0.13

0.25 

356 
Max

7.25 0.41 0.22 0.08 0.04
0.04 

Min 
6.75 0.34 0.16 0.03 0.01

0.01 

380 
Max

9.00 0.15 1.50 3.75 0.38
2.25 

Min 
8.00 0.05 0.50 3.25 0.13

0.75 

390 
Max

17.50 1.09 0.98 4.75 0.08
0.08 

Min 
16.50 0.66 0.33 4.25 0.03

0.03 

Wrought Finished Goods Portfolio 

3105 
Max

0.70 2.00 0.53 0.34 0.11
0.19 

Min 
0.50 1.20 0.18 0.21 0.04

0.06 

5052 
Max

0.34 2.65 0.34 0.08 0.08
0.15 

Min 
0.11 2.35 0.11 0.03 0.03

0.05 

3061 
Max

0.70 1.10 0.70 0.34 0.11
0.19 

Min 
0.50 0.90 0.00 0.21 0.04

0.06 

6111 
Max

1.00 0.88 0.30 0.80 0.38
0.11 

Min 
0.80 0.63 0.10 0.60 0.23

0.04 

 

In order to ensure that results are not biased towards any particular product type, all four 

finished goods were modeled using the same average demand and demand distribution, 

as shown in Figure 3-1. Specifically, the demand for all four alloys in both portfolios was 
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modeled with a mean of 20kt each and a coefficient of variation3 of 11%. Although 

finished good demand may be more accurately represented by a continuous function, the 

probability distribution was discretized for these analyses to leverage the computational 

efficiency and power of linear optimization methods. This approach also matches well 

with common approaches of and information available to production planners. 

(Choobineh and Mohebbi 2004) As shown in Figure 3-1, for the purposes of this case 

analysis, each finished good has five possible demand outcomes, symmetric around the 

mean.  Considering all four alloys together, these conditions define 625 possible demand 

scenarios (i.e., 54 from five possible outcomes for each of the four finished products). The 

model formulation can be executed as presented with finer probability resolution, but at 

the expense of greater computational intensity, and more importantly, the difference in 

the total expected cost introduced by granularity is marginal, as we shall see in the later 

discussion.  

 
Figure 3-1 Probability distribution function used for each finished good demand under the 
Base Case. 

                                                            
3 Defined as σ/μ where σ is the standard deviation and μ is the mean. 
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For the Base Case presented subsequently, all raw materials were assumed to be 

unlimited in availability. The effects of this assumption were explored and are described 

later in this paper. The model framework presented herein can be used for cases of non-

uniform demand and constrained scrap supply with no structural modification. 

3.2 Base Case Results: Comparing Conventional and Recourse-Based Approaches 

The scrap purchasing strategy generated by the Recourse-Based and Mean-Based model 

as well as summary costs and primary usage are presented in Table 3.4 and for the 

wrought production portfolio and Table 3.5, for the cast production portfolio. Even with 

only an 11% coefficient of variation (i.e., the Base Case assumptions), sizeable increases 

in the modeled purchasing of certain scrap types can be seen with the Recourse-based 

strategy in both portfolios. In aggregate, that strategy drives modeled scrap purchasing up 

by around 2%. Notably, the Recourse-based strategy does not drive up the consumption 

of scrap uniformly across the various scrap materials. As shown in column 5 of Table 3.4 

and Table 3.5, the additional scrap purchases range from 0% for Litho Sheet to 3.74% for 

UBC in the wrought portfolio production and range from 0% for 5000 series scrap to 2.68% 

for mixed castings in the cast portfolio. Finally, for this Base Case comparison, the 

expected cost savings derived from the Recourse-based strategy was $0.25M and $0.44M 

for each scenario compared with the more traditional Mean-based approach. The 

difference in purchased quantities that emerges between the two modeling strategies will 

be referred to through the balance of the thesis as a hedge. Just like more conventional 

financial hedging, this scrap hedge provides insurance against the need for purchasing 

expensive primary materials. Specifically, the scrap hedge emerges because the 

additional cost of purchasing and carrying the scrap when demand turns out to be low, is 
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outweighed by the economic benefits of having the scrap when demand is high. As such, 

the existence of the hedging purchases is driven by the potential for high product demand.  

From an environmental perspective, it is notable that the Recourse-based method does 

not only drive additional scrap purchases, but the existence of these purchases enables 

additional expected scrap consumption. This increased scrap consumption does not 

compromise the ability to use scrap in low demand scenarios. In fact, for some cases the 

existence of pre-purchased scrap should drive occasional hyper-optimal scrap usage.  

Table 3.4. Mean-based and Recourse-based approaches comparison on wrought alloys 
production portfolio 

Raw Materials Type Mean-Based Strategy Recourse-based strategy Δ (kT) Δ (%) 

Total Primary Al 52.99  52.40  ‐0.59  ‐1.11% 

5000 Series Scrap 
Clip 1.40  1.40 

0.00  0.00% 

Litho sheets 0.00  0.00  0.00  ‐ 

Mixed Casting 2.01  2.09  0.07  3.53% 

UBC 6.67  7.67  1.00  15.00% 

Painted Siding 17.64  18.82  1.18  6.66% 

Total Scrap 27.72  29.97  2.25  8.10% 

Expected Cost 202.25  202.01  ‐0.25  ‐0.12% 
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Figure 3-2 Base Case Results (wrought scenario): Scrap purchasing for mean-based 
strategy (decision only on mean demand) and recourse-based strategy (decision based on 
probability distribution of demand) 

 

Table 3.5. Mean-based and Recourse-based approaches comparison with cast alloys 
production portfolio 

Raw Materials Type Mean-Based Strategy Recourse-based strategy Δ (kT) Δ (%) 

Total Primary Al 42.24  38.74  ‐3.50  ‐8.29% 

5000 Series Scrap 
Clip 0.00  0.00 

0.00  ‐ 

Litho sheets 11.76  12.76  1.00  8.50% 

Mixed Casting 20.00  22.00  2.00  10.00% 

UBC 0.00  0.00  0.00  ‐ 

Painted Siding 6.00  6.50  0.50  8.33% 

Total Scrap 37.76  41.26  3.50  9.27% 

Expected Cost 197.35  196.92  ‐0.44  ‐0.22% 
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Figure 3-3 Base Case Results (Cast Scenario): Scrap purchasing for mean-based strategy 
(decision only on mean demand) and recourse-based strategy (decision based on probability 
distribution of demand). 

  

3.3 Cost Breakdown in each demand scenario 

In terms of the total expected cost, the recourse-based model provides cost saving, as well 

as more scrap utilization. However, this aggregate behavior does not bear out for each 

scenario as shown in Figure 3-4. The cross-over point is when demand slightly exceeds 

its expected value, i.e. 20kT. Before the mean demand, the deterministic model incurs 

less cost. The reason for this behavior is that the demand is so low that the pre-purchased 

scrap for either strategy will not be fully consumed. Thus, the lesser pre-purchase of 

scrap materials associated with the deterministic scenario leads to lower inventory levels 

with less storage cost. However, when the demand soars beyond the expected demand, 

the excess storage of cheaper scrap will benefit the recourse strategy. Notably, the 

magnitude of cost difference on the two sides of the cross-over point is significantly 

different. This is also the key why the recourse model generates purchasing and 
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production plans that outperform the deterministic model. The intuitive explanation is in 

high demand scenario, the availability of excess scrap saves the cost of approximately the  

  

Figure 3-4 costs breakdown on each demand scenario. 

 

difference between the primary materials and the scrap materials. However, the excess 

amount of scrap inventory will incur a cost equivalent to 5% of the unused scraps value 

while in a lower demand scenario. This is can be understood as cost of carry, which sets 

an upper bound limit for pre-purchasing more scrap than enough for the expected demand.  

In summary, the excess amount of scrap pre-purchase in recourse-based model is actually 

a hedge against more costly and riskier high demand scenario. The cost of the hedge is 5% 

of any scraps left after meeting all the demands. The term “hedging” will be mentioned 

frequently in the thesis hereafter with this meaning. 
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3.4 Exploring the Impact of Model Assumptions 

The degree of hedging derived from a Recourse-based modeling approach will 

undoubtedly depend on the operating conditions of a specific remelter.  The most 

pertinent assumptions include the underlying demand uncertainty, raw materials pricing 

conditions and scrap availability constraints.  Given that operating conditions can be 

expected to evolve between the initial stage of planning and the final stage of materials 

production, it is important to have a sense of how the hedge should evolve in response to 

such changes. The following explores the impact of these factors. 

3.4.1 Impact of Magnitude of Demand Uncertainty on Hedging 

In the Base Case, at approximately 10% demand uncertainty, the benefits derived from 

the Recourse-based strategy were $0.25M and $0.44M respectively in cost savings,  

0.59kt and 0.88kt increase in average scrap usage for both portfolios.  These benefits are 

expected to rise with increasing product demand uncertainty.   

In fact, for modifications on the Base Case, as the level of demand uncertainty increased 

from 10% to 30%, the increase in scrap consumption went from 0.59kt and 0.88kt to 

1.77kt and 2.64kt, the associated cost savings increased from $0.25M and $0.44M to 

$0.77M and $1.32M for the wrought and cast portfolio respectively. Recall that the 

hedging purchases emerge from a favorable balance between the costs of carrying 

additional scrap when demand is low and the savings realized when demand is high. As 

long as this favorable balance exists, as uncertainty increases the hedge basket grows to 

satisfy possible high demand scenarios. As with the Base Case results, increased hedging 

purchases drive higher expected scrap use and higher economic benefit in comparison to 
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that associated with the traditional deterministic modeling approach. The explicit test on 

the relationship between the demand uncertainty and the hedging ratio is run with the 

model. Notably, Figure 3-5 shows a linear correlation between both quantities. The 

underlying theoretical exploration will be demonstrated in   

 
Figure 3-5 Impacts of magnitude of demand uncertainty on the hedging ratio. 

 

3.4.2 Impact of Salvage Value on Hedging 

In the results presented thus far, an assumption has been made that unused scrap 

materials have salvage value equal to 95% of their original costs.  Deviation from this 

assumption would be expected to have an impact upon modeled optimum scrap pre-

purchasing strategy.  Figure 3-6 and Figure 3-7 illustrate the sensitivity of the magnitude 

of the hedge to scrap salvage value for both wrought portfolio and cast portfolio. The 0kt 

line is a reference for the mean-based strategy. Results are shown for two values of 

demand variation. The most notable feature of this figure is that the hedge is not always 

positive.  Ultimately, two factors affect the desirability of additional scrap purchase.  One 
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is the potential cost savings that can be derived from having cheaper scrap materials to 

use when needed (price differential advantage).  The other is the net cost of carrying that 

scrap material (carrying cost) until it leaves inventory, especially for low demand (i.e., 

low scrap usage) cases.  The carrying cost can be defined as the acquisition price of the 

raw material less the salvage value of the raw material.  If the salvage value of the scrap 

is too low, the carrying cost will more than offset the price differential advantage such 

that purchasing and storing less scrap will be advantageous – leading to a negative hedge.  

The difference between the two driving forces for hedging, namely cost savings from the 

price differential less the carrying cost will be termed the option value of scrap.  The 

hedge will be positive (negative) when the option value is positive (negative).  

The hedge was positive under the Base Case because the price differential advantage 

outweighs the carrying cost of those scraps, giving a positive option value4.  As Figure 3-6 

and Figure 3-7 illustrate, below approximately 60% salvage value, the hedge no longer 

provides value and shrinks to zero.  In fact, below this point, it is better to have less scrap 

on hand than implied by the mean-based strategy.  At around 60% salvage value, the cost 

of carrying an extra unit of scrap is perfectly balanced by the price differential advantage 

from having that extra unit.   

 

                                                            
4 Option value of scrap: The difference between the two driving forces for hedging, namely cost 
savings from the price differential less the carrying.  The hedge will be positive (negative) when 
the option value is positive (negative).   
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Figure 3-6 Effects of scrap salvage value on scrap pre-purchase hedging strategy in wrought 
scenario. 

 

 

Figure 3-7 of scrap salvage value on scrap pre-purchase hedging strategy in cast scenario. 

 

From Figure 3-6 and Figure 3-7 it is apparent that the hedge as a function of increasing 

salvage value is convex.  This can be understood by considering separately the effects of 

the two option-value driving forces.  As the salvage value drops (to the left in the graph), 



41 
 

there is a tendency to purchase less scrap because the carrying cost is increasing.  But 

while lower salvage value implies higher carrying cost, having less scrap material also 

denies the material system of the price differential advantage stemming from the price 

difference between scraps and primaries.  This price differential advantage is independent 

of the salvage value.  These two effects oppose each other, resulting in a slow rate of 

decrease in the hedging amount in low salvage value environment.  On the other hand, 

when the salvage value is high the price differential advantage remains while the cost of 

carry is also reduced.  This double positive in higher salvage value environment is the 

momentum behind the convexity observed in Figure 3-6 and Figure 3-7.   

The option value is also intimately tied to the magnitude of the underlying demand 

uncertainty.  Larger uncertainties imply higher option value and result in greater driving 

forces for hedging.  When the price differential advantage more than offsets the carrying 

cost, greater demand uncertainty will translate this effect into more positive hedging.  

Similarly, when the carrying cost dominates, greater demand uncertainty will exacerbate 

the situation by pushing for less scrap purchasing (i.e., more negative hedging).  Hence, it 

is observed in Figure 3-6 and Figure 3-7 that with greater demand uncertainty, the curve 

rotates inward (counter-clockwise).  

3.4.3 Impact of Secondary/Primary Price Gap on Hedging 

Variations in the price differential advantage also affect the option value of scrap, which 

in turn affect the degree of hedging. Since each raw material has its own price, the price 

gap depends on the definition of the secondary price and primary price. According to 

Table 3.1, the variance of raw materials’ prices is insignificant comparing to prices 

themselves. Therefore, for simplicity, secondary material prices are defined as the 
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average price of all scraps used during the production, while primary materials’ price are 

the cost of producing if no scraps were available, i.e. only pure aluminum and alloying 

elements can be used. Figure 3-8 and Figure 3-9 study the effect on the Base Case hedge 

of the gap between secondary and primary prices for both portfolios, represented here as 

the ratio between those two quantities. At the critical point of roughly 100% secondary to 

primary price, the Recourse-based model suggests no additional scrap purchase above 

that suggested by the mean-based method. At higher secondary prices, the hedge 

becomes negative.  

As discussed previously, the option value of scrap increases with demand uncertainty.  

This effect is manifested in Figure 3-8 and Figure 3-9  in that with greater uncertainty, 

the net offsetting effects of the carrying cost and the price differential advantage is 

magnified, leading to a clockwise rotation of the curve. Specifically, above a price ratio 

of around 100%, the carrying cost dominates over the price differential advantage.  

Therefore, in this region the hedge is negative and the effect is magnified when the 

underlying demand uncertainty increases.  Once again, at a price ratio of about 100%, the 

forces of the price-differential advantage and the carrying costs are just balanced.  As 

such, regardless of what the underlying demand uncertainty is, the hedge, which can be 

thought of as a response to the uncertainty, is zero. 
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Figure 3-8 Effects of scrap-to-primaries price ratio on scrap pre-purchase hedging strategy 
in the wrought scenario. 

 

 

Figure 3-9 Effects of scrap-to-primaries price ratio on scrap pre-purchase hedging strategy 
in cast scenario. 

 

As secondary and primary prices converge, the price differential advantage goes to zero.  

Therefore, the downward trend with increasing scrap-to-primaries price ratio is no 
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surprise.  The observed concavity is due to different system constraints on either end of 

the price ratio spectrum.  When the price ratio is close to one, there is no barrier against 

the drop in the hedge amount except of course that the overall scrap purchase cannot go 

below zero.  As long as this point is not reached, the hedge will continue to dive.  When 

the price ratio is low, the price differential advantage is large.  However, even if the ratio 

goes to zero (scrap is free), the increase in the hedging amount will not accelerate.  The 

mismatch in the compositions between scrap materials and the products sets a scrap 

consumption limit.  Only so much scrap can be used by the production before it becomes 

physically impossible to meet compositional constraints.   

Interestingly, Figure 3-8 and Figure 3-9  also shows that while the overall trend is for the 

hedge to decline with higher scrap prices, there are regions over which the response is 

relatively insensitive.  Notably, such effects were not apparent in Figure 3-6 and Figure 

3-7.  The relative insensitivity versus that of the hedging amount towards the salvage 

value is apparent from the formulation of the objective function.  In Figure 3-6 and Figure 

3-7, as the salvage ratio varies only the carrying cost of scrap is changing; the price 

differential advantage is constant.  Therefore, the sensitivity of the hedge towards the 

salvage ratio is entirely driven by the change in the carry cost.  However, in Figure 3-8 

and Figure 3-9 as the price ratio varies both the carrying cost and the price differential 

advantage are changing.  Nevertheless, the carrying cost is changing very slowly.  When 

the price differential between scrap and primaries rises by 5%, the carrying cost only 

goes up by 5% × (1 - 95%) = 0.15%.  The choppiness in Figure 3-8 and Figure 3-9 is 

attributable to this slow response. 
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The convexity and concavity observed in Figure 3-6, Figure 3-7 and Figure 3-8, Figure 

3-9 gives the planner a sense of how frequently the hedge should be adjusted by buying 

and selling scraps.  The absolute distance between these curves and the zero-hedge 

reference line can be taken as a measure of potential for cost savings.  For instance, when 

the salvage ratio is low, a small change in the ratio does not change this potential 

significantly.  However, in high salvage ratio regions, the hedge is much more sensitive 

and as such should be monitored and adjusted more frequently.  Similarly when the price 

ratio between scraps and primaries is large, the hedge should be adjusted more frequently 

than when the price ratio is low. 

3.4.4 Variation in the width of the specification 

In reality, scrap composition has significant uncertainty. In current practice, this variation 

is accommodating by producing to a narrower finished products specification than is 

actually required by the customer. Specification width is defined as the maximum 

boundary minus the minimum boundary allowed. Figure 3-10 explores its impact on 

expected costs of both models and scrap usage increase as well. The x-axis is percentage 

of the specification span compared to the original one. First of all, the specification span 

does not affect the validity of the advantage of recourse model strategy, i.e., both cost 

saving and scrap usage increase exist. Secondly, scrap usage increase in percentage and 

cost savings stays relatively similar with the change in span despite a significant change 

in the total expected costs. The reason for the inflection point for the expected costs is 

that a more expansive alloying element becomes binding when the width of the 

specification shrinks below 60% for wrought case. The cast case will have the same 

behavior. 



46 
 

 

Figure 3-10 Impacts of products’ specification span on scrap usage, costs with both model. 

 

3.4.5 Impact of the discrete probability distribution of demands 

As part of the modeling framework setting, the probability distribution of demands which 

is continuous in reality has been discretized. The natural questions risen would be if this 

approach will qualitatively or quantitatively change the hedging behavior, how many 

discrete states would be appropriate if hedging behavior is still valid for cost saving and 

scrap usage enhancement. Clearly, there is a big difference in terms of possible states and 

their possibilities of happening if continuous distribution were discretized into 5, 25 or 

256 discrete states as shown in Figure 3-11. The more states the probability distribution is 

split into, the closer it is to representing the underlying distribution. However, with n 

products and m uncertain demand scenarios, the total possible outcomes for the problem 

at hand are mn, which scales rapidly with the totally number of discrete states. Is the 5 

discrete states used in the case study so far are sufficient to capture the real hedging 

behaviors in practice?  
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Figure 3-11 comparisons among granularity of discrete probability states. 
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A series of runs were conducted with a range of granularity5. The total expected cost and 

the corresponding hedging ratio6 for both 10% and 20% CoV scenario are shown in 

Figure 3-12 and Figure 3-13. There are three characters that are very interesting. Firstly, 

both expected costs and hedging ratios fluctuate back and forth with increasing number 

of discrete states. The variance of the fluctuation is decreasing and is expected to be 

diminishing with more and more discrete states until being continuous distribution. 

Secondly, In addition to the fact that the lower CoV leads to the lower expected costs and 

hedging which is well in line with what is observed previously, the variance of 

fluctuations is also smaller with lower CoV. Expectedly, the variance of the fluctuation 

will gradually disappear when the CoV is approaching zero. Therefore, the sign of the 

hedging ratio will not be affected by the granularity. Thirdly, despite the variance in the 

expected cost with granularity change, fortunately, as shown in Figure 3-12, the largest 

discrepancy is less than 0.006% out of the total cost, also less than 2% of the total cost 

saving by using recourse model. Therefore, it is practical to use 5 discrete states to 

simulate the continuous demands probability distribution without no compromise in the 

economic benefits. The most important conclusion that can be drawn here is the existence 

of the intrinsic hedging ratio and expected costs based on the fact that the ratio and the 

expected cost are converging into a steady value with increasing number of discrete state. 

The intrinsic hedging ratio can be viewed as the hedging ratio in reality with continuous 

probability distribution. 

 

                                                            
5 Granularity refers to the degree of discretization of the probability distribution. 
6 Hedging ratio is the ratio between the scrap hedging amount recommended by the recourse‐based 
model and the total pre‐purchase amount based only on the expected demand under mean‐based model. 
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Figure 3-12 Effects of granularity on the cost objective function. 

 

 

Figure 3-13 Effects of granularity on hedging ratio 
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In summary, the results of the case studies in the chapter lead to the following 

conclusions: 

1. The recourse-based model provides significant cost savings while promoting 

more expected scrap usage compared to the traditional mean-based model.  

2. The benefits stand for both cast and wrought aluminum alloys production. More 

generally, the benefits stem from the explicit consideration of the demand 

uncertainty, so they are irrelevant to compositional characteristics of the products. 

3. There are several major factors that can affect the hedging behavior. The factors 

include salvage value of the residual scraps, secondary materials’ cost advantage 

over primary materials, the number of discretized states adopted in the model, the 

specification of the products and so on. Those factors might even lead to negative 

hedging under certain circumstances. 

In order to fundamentally understand the above observations from the case study, an 

analytical analysis will be conducted in the next chapter which will suggest a close form 

expression of the hedging ratio to well explain above observations. 
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4 Analytical Study 

4.1  Analysis Conditions Set-up 

Across all of the cases considered, for reasonable operational characteristics, the 

recourse-based model leads to an increase in scrap pre-purchasing and a decrease in the 

total expected cost compared to the deterministic model. In order to analytically describe 

this behavior, the following analysis was constructed for the pre-purchase decision 

making process of the Aluminum producer, Doitsmart & Co., for one of their Al-alloy 

products.  

Given the historical mean demand for the product, D, if Doitsmart made their 

prepurchasing decision based on the deterministic model, they would not find any 

incentive to order more scrap except for those necessary to exactly meet the expected 

demand, D. Here we assume the amount of scrap ordered if guided by the deterministic 

model is f×D, where f is a fraction between zero and one. The f can be thought as a 

fractional contribution of the scrap to the final product. To the extreme, for example, if 

the scrap met the product specification without any additions, f should be one. On the 

other hand, if we need to combine 10wt% of pure Al and 90wt% of the scrap to meet the 

specification, f, in this case, is ought to be 90%.  After all, f is a determined constant as 

long as the specifications of the scrap and the finished product are set.  

To continue with our discussion on the scrap pre-purchasing strategy of Doitmart, instead 

of the belief in stationary demand, they believe that the demand is uncertain, and roughly 

follows a normal probability distribution with the mean at D and an estimated standard 

deviation of σ, based on which they decide to pre-purchase an f×H amount of scrap other 
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than f×D and believe the decision would provide them with a better expected cost in 

practice, where H is effectively their target demand scenario, i.e., all the scrap they pre-

purchased will be just used up when the demand happens to be H. Considering f is a 

constant, thus, it is basically interchangeable to look at the optimal scrap pre-purchase 

f×H or the optimal target demand H. The aim of this chapter is to find the exact 

expression for the optimal scrap pre-purchase f×H or the optimal target demand H.  To 

simplify the case while still capturing its basic features, we assume Doitsmart has one 

finished goods in the production portfolio with only one element, Mg for instance, with 

the specification constraint of between Emin and Emax. Doitsmart also has primary Al of 

the price PAl, primary Mg of PMg available whenever they need in the market, and one 

scrap of Ps with Mg composition of Es available only if they pre-purchase it well ahead of 

their production schedule. Also, the salvage value of any un-used scrap out of its original 

price is represented by Salv% which is less than 100% in practice, since at least 

Doitsmart is bearing the cost of carry, or the time value of the money. Based on current 

market price, we generally assume PMg >PAl >Ps, however, we might manipulate them to 

better understand the relative price impacts on the hedging behavior as well. The hedging 

behavior varies with the relative cleanness of the scrap comparing to the finished goods’ 

specification window, where “clean” means the Mg content is small and vice versa. 

Therefore, we break down our discussion into four scenarios in terms of the relative 

cleanness of the scrap with the finished goods. 

4.2 Scenario One: Es =Emin 

This is the most straightforward scenario, since not only the scrap meets the finished 

goods’ specification without blending in any other primaries, i.e., f=1, but also we only 
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need one consistent recipe of primary materials to meet the excess demand after the pre-

purchased scrap is used up if the finished goods were much more popular than what 

Doitsmart expected. The expected cost E[C] is shown below in Eq 4‐1, 

E C C x P x dx 

Eq 4-1 

, where C(x) is the production cost as a function of demand and P(x) is the probability 

density function of the deamand, x.  

The cost function C(x) is a piecewise-defined function. The first piece is when the 

demand x is smaller or equal to H. In this case, the pre-purchased scrap is enough to meet 

all levels of demands for the finished good, so the cost only comprises the used scrap cost, 

and the storage cost for the remained scrap.  

C x x P 1 Salv% H x P  

The second piece is when the demand is so high that we have to introduce a mixture of 

primary materials to meet the excess demands after all scrap has been used up, thus, the 

cost consists of a scrap part and a primary part. 

C x H P x H P  

In the Cs(x), Pp refers to the unit cost of the optimal recipe for the mixture of primaries 

satisfying the specification:  

p 1 E P E P  

In conclusion,  
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C x
x P 1 Salv% H x P , H

H P x H P ,  

Eq 4-2 

Thus, we combine Eq 4‐2 and Eq 4‐1 to describe the expected cost. 

E C C x P x dx C x P x dx
H

H
 

In order to find the H to minimize E[C], the first derivative of the expected cost with 

respect to H must be zero. 

dE C
dH 0 

The equation above leads us to the conclusion for the optimal pre-purchase amount of the 

scrap. 

D, H P x dx
H P P

P Salv% P  

Eq 4-3 

The D, H  stands for the cumulative probability function with the demand of H. If H 

were infinity, D, H  is one, otherwise it is smaller than one and larger or equal to zero. 

When H is equal to the mean demand, D, the function should have a value of one half. 

This is also a criterion to have zeroe hedging as expressed in Eq  4‐4. Such criteria is 

specifically: 

P P
P Salv% P

1
2    

 H  C
  P 2 Salv% P      



55 
 

Defining the the storage cost per unit scrap unused as Storage% 1 Salv%, we can 

transform the zero hedging criterion into a more intuitive form as follows: 

P 1 Storage% P  

Eq 4-4 

This criterion means that there is no advantage to order more scrap than the deterministic 

solution if the cost for the primary materials is cut down to the same level as the scrap 

cost plus its storage cost incurred by the pre-purchasing ahead of production time.  On the 

other hand, if the unit storage cost is 0 percent, or in other words, 100% salvage value, Eq 

4‐3 evolves into D, H P P
P P

1. It is in line with our expectation since if there 

were no penalty by buying more scrap than necessary, the greedy nature will drive us to 

avoid using any primaries by buying an infinite amount of scrap and selling the 

remaining scrap at no cost after meeting the revealed demand. 

Figure 4-1 illustrates the total cost for each possible demand scenario. An inflection point 

can be clearly noticed at the mean demand, since the scrap will be used up whenever the 

actual demand exceeds the mean so that we have to use a more expensive mixture of 

primary materials to meet the extra demand. 
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Figure 4-1: Total Cost and probability density of each demand scenario for deterministic 
strategy of pre-purchasing D amount of scrap. Here we assume the mean demand is 20kT. 
 

Figure 4-2 below on the other hand shows the cost under recourse pre-purchasing 

strategy. The inflection point happens at 21.5kT demand scenario which is the H in this 

example.  

 

Figure 4-2: Total cost and possibility density of each demand scenario for recourse strategy 
of pre-purchasing H amount of scrap. Here we assume the mean demand is 20kT. 
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When we put the two cost lines together to compare as in Figure  4‐3, we will see the 

recourse model decreases the total expected cost by spending slightly more on storage 

cost (due to buying the extra hedging amount) when demands is lower than the mean, but 

saving relatively more in high demands scenarios. 

 

Figure 4-3: Comparison of the two strategies in terms of their total costs for each scenario. 

 

At this point, it is very natural to introduce the concept of the Hedging Ratio which is 

defined as below. 

Hedging Ratio  HR  
f H f D

f D
100%

H D
D

100% 

Eq 4-5 

It stands for the percentage change in the scrap pre-purchase between the optimal results 

and deterministic results. 

For a cumulative probability function, we can express it using error functions as shown in 

Eq 4‐6.  

0%

2%

4%

6%

8%

10%

12%

30

35

40

45

50

55

60

65

70

75

80

12 14 16 18 20 22 24 26 28 Pr
ob

ab
ili
ty
 D
en

si
ty
 fo

r 
D
em

an
d 
Sc
en

ar
io

Co
st
 ($

)

Demand Scenario (kT)

Deterministic Cost

Recourse Cost

Probability of the demand senario



58 
 

D, H
H D
σ

1
2

1 erf
H D
√2σ

1
2

1 erf
HR

√2 CoV
 

Eq 4-6 

Here CoV refers to the coefficient of variation, i.e. standard deviation over the mean. 

From Eq 4‐3 and Eq 4‐6, we can derive the explicit analytical expression for HR. 

HR √2 CoV erf
1 1 Storage% P

P

1 1 Storage% P
P

 

Eq 4-7 

Since Salv% = 1 – Storage%, we can further derive Eq 4-7 to the following. 

HR √2 CoV erf 2

P
P 1

Salv% P
P 1

1  

 

Firstly, if we assume CoV as 10% and 20% respectively, the relationship between HR 

and the price ratio between the scrap price and the primary price is shown below in 

Figure 4-5 and the relationship between HR and the salvage value of the residual scraps 

is shown in Figure 4-4. They follow the shape of an inverse error function.  Secondly, if 

we fixed scrap over primary price ratio, the HR is a linearly related to CoV as shown in 

Figure 4-6 for various scrap over primary price ratio.   
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Figure 4-6: Linear relationship between the CoV and hedging ratio. 

 

4.3 Scenario Two: Es <Emin 

This scenario is very similar to the scenario one, except that we need to modify the raw 

scrap materials by adding pure Mg to at least meet the minimum composition 

specification of the finished goods. We define the optimal modified scrap with the price 

Pmods as the cheapest mixture of the scrap and primaries to meet the specification. In order 

to find the f and Pmods, we assume there are x and y percent of the scrap and pure Mg in 

the mixture respectively. We can come up with the following two equations and their 

solutions. 

f f 1
f E f E

f
1 E
1 E

f
E E
1 E
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Thus, the unit price for the modified scrap which can directly meet the specification is 

shown in Eq 4-8. 

P
1 E
1 E P

E E
1 E P  

Eq 4-8 

Following the same derivation process as in Eq 4-7, we can come up a similar result for 

H except for the replacement of the scrap price Ps by the modified scrap price Pmods. 

HR √2 CoV erf
1 1 Storage% P

P

1 1 Storage% P
P

 

 

4.4 Scenario Three:  Emax ≥ Es >Emin 

In this case, the scrap can meet the specification directly like in scenario one. 

Nevertheless, when the scrap is just used up given the moderately higher demand, we 

could take advantage of the accumulated excess amount of Mg in the scrap used by 

adding pure Al solely to meet the extra demand without the addition of Mg which is more 

expensive according to our assumption at the beginning. After the addition of pure Al is 

significant enough to dilute the Mg level of the whole production batch to Emin level, we 

go back to using the consistent mixture of pure Al and Mg to meet any additional unmet 

demand.  In this scenario, the piecewise-defined cost function should have three pieces 

instead of two. 

The first piece is when x ≤ H, as in previous scenarios, under these conditions the scrap 

will not be (or will just be) fully consumed. So the cost function for this piece will be the 
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same as shown previously. 

C x x P 1 Salv% H x P  

The second piece is when demand just exceeds H, but is smaller than H+Δ at which point 

we have to introduce pure Mg. The magnitude of Δ can be solved for exactly as shown in 

Eq 4‐9. 

H Δ E f H E             Δ H
f E E

E
 

Eq 4-9 

The cost function for H < x ≤ H+Δ would have first term of the scrap cost, and the second 

term of the pure Al dilution cost. 

C x H P x H P  

The third piece is when x > H+Δ, the cost function consists of the H amount of scrap cost, 

Δ amount of Al cost and the excess amount of the primary mixture cost.  

C x H P Δ P x H Δ P  

In summary,  

C x
x P 1 Salv% H x P ,

H P x H P , H
H P Δ P x H Δ P ,

 

Eq 4-10 

The expected cost can be written by introducing Eq 4-10 into Eq 4-1.  

E C C x P x dx C x P x dx
H

H
C x P x dx

H

H
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In order to calculate E C
H

0 to optimize the expected cost, we further transform the 

above expected cost function. 

E C C x P x dx C x P x dx C x P x dx
HH

C x P x dx
H

C x P x dx
H

 

In it, the result for C x P x dx will be a constant as H P D H P . After 

further grouping of the expected cost, we get the following expression which is easier to 

take a derivative of with respect to H. 

E C Constant C x C x P x dx C x C x P x dx
H

H

H P D H P   P Salv%P H x P x dx
H

P P H Δ x P x dx
H

 

When E C
H

0, we get the optimized H scrap pre-purchase. 

dE C
dH

0

P Salv%P
d
dH

H x P x  dx
H

P P
d
dH H Δ x P x  dx

H
 

In it, 
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d
dH

H x P x  dx
H

d
dH H P x  dx

H d
dH x P x  dx

H

P x  dx
H

H P H H P H

P x  dx
H

 

On the other hand, according to Eq 4-9  H Δ H E
E

 

d
dH H Δ x P x  dx

H

fE
E

d
d H Δ

H Δ x P x  dx H Δ x P x  dx
H

fE
E

d
d H Δ H Δ D  – H Δ P x  dx

H
x P x  dx

H

fE
E

1 P x  dx
H

H Δ P H Δ H Δ P H Δ

fE
E 1 P x  dx

H
 

 

After the further derivation and formation, we end up with the following relationship. 

ΔP E P P ΦD,
E
E

H P Salv% P D, H 0 

Eq 4-11 
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In the above equation, ΔP P 1 E P E P , which stands for the cost 

saving for the scrap compared against a mixture of the primary materials having the same 

composition as the scrap.  

Discussion of  Eq 4-11 will facilitate our understanding of its significance. Firstly, when 

Es =Emin, as we would expect, Eq 4-11  will fall back to the exact form of Eq 4-3. This 

observation suggests that Eq 4-11 is a generally applicable form, even to scenario 1 and 2. 

Secondly, under the assumption that PMg =PAl, the difference between Es and Emin would 

not be reflected by the equation since the second term of Eq 4-11 will be zero. It is an 

intuitive result due to the same slope the cost functions C2(x) and C3(x) will share given 

the same price for two primaries shown as below. 

C x H P Δ P x H Δ P H P x H P C x  

 

4.5 Scenario Four:  Es >Emax 

This scenario behaves nearly identically to the previous scenario except that we need to 

dilute the scrap by adding primary pure Al so that it meets product specifications. Again, 

here we would like to introduce the concept of the modified scrap as we did in the 

analysis of scenario two.  This time we use the recipe of f weight percent of scrap, but fAl 

percent of pure Al as opposed to the pure Mg in scenario two. The f and fAl should follow 

the following relationship, based on which we can solve them respectively. 
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f f 1
f E E

f
E
E

f
E E

E

 

Eq 4-12 

Thus, we replace the Ps in Eq 4‐12 by P E
E

P E E
E

P ,  Es by Emods which 

is just equal to Emax. We can then summarize the piecewise-defined cost functions for this 

scenario as: 

C x
x P 1 Salv% H x P ,

H P x H P , H
H P Δ P x H Δ P ,

 

Eq 4-13 

There should also be a modification on the expression for Δ.  

Δ H
f E E

E  

Eq 4-14 

Finally, the expression for H under this scenario will be quite similar to that in scenario 

three. 

ΔP E P P ΦD,
E
E H P Salv% P D, H 0 

Eq 4-15 

In it, ΔP P 1 E P E P . 

In summary, a universal equation for H can be concluded for all four scenarios listed in 

chapter 4. Scenario one is a special case of scenario two, when we set Es=Emods=Emin, and 
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Pmods=Ps. Identically, the analysis of scenario four can be viewed as a special case 

included in scenario three, since the Emods under scenario four is always Emax which is 

scenario three’s upper bound. Finally, the conclusions for scenario one and two can be 

derived from the conclusion of scenario three and by just setting Emods or Es equal to Emin.  

The universal equation for the H can be derived as follows: 

ΔP Em s PMg PAl ΦD,σ2
Em s

Emin
H Pp Salv% Pm s ϕD,σ2 H 0 

Eq 4-16 

In the expression, where ΔP Pm s 1 Em s PAl Em s PMg . 

When Es ≤ Emin, Ems =  Emin, Pm s
1 Emin
1 Es

Ps
Emin Es

1 Es
PMg. 

When Emin<Es≤Emax, Emods=Es, Pmods=Ps. 

When Es>Emax, Ems=Emax, Pm s
Emax

Es
Ps

Es Emax
Es

PAl. 

In practice, the deference between Pp and PAl are most likely within 1%, which is 

negligible. Thus, under the approximation that Pp  = PAl, the three pieces in Eq 4-13 will 

be effectively simplified into two pieces as following. 

C x x Ps 1 Salv% H x Pm s,
H Pm s x H PAl, x  

The general expression for HR will be almost identical to Eq 4-7. 
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HR √2 CoV erf 1
1 1 Storage% Pm s

PAl

1 1 Storage% Pm s
PAl

 

When comparing to the results of the case study in chapter 3, the behavior of this 

analytical solution is satisfactorily consistent with the fully developed model results. For 

example, recourse model results suggests a linear relationship between CoV and the 

hedging ratio in Figure 3-5 which is proved by Figure 4-6 drawn based on the expression. 

The impacts of scrap over primary price ratio on the hedging ratio illustrated by the 

model results in Figure 3-8 and Figure 3-9 can also be well explained by Figure 4-5. 

4.6 Joint demand uncertainty analysis 

One step further, we should consider the multiple products portfolio. In order to simplify 

the problem as much as possible, firstly, we assume that the probability distributions of 

demand for every product in the portfolio are independent and are assigned a normally 

distributed function P(x). Secondly, in order to rule out the effects of compositional 

interactions across products, we assume all products in the portfolio are exactly the same 

in composition. Even though the assumption is unrealistic, it is demonstrative of some 

important properties. For further simplicity, we consider a portfolio that contains only 

two products which will be then extended to the most general n products case. It does not 

change the qualitative validity of the results by assuming the scraps’ composition lays on 

the minimum specification boundary.  

Similar symbols will be assigned as those previously in this Chapter. The only difference 

is that we have two scrap materials usage quantities, x1 and x2. 
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C x1, x2
x1 x2 Ps 1 Salv% H x1 x2 Ps, x1 x2 H

H Ps x1 x2 H Pp, x1 x2 H 

The expected cost will be of similar form as that in the one scrap case. 

E C C x , x P x P x dx dx
H

C x , x P x P x dx dx
H

 

In order to find the optimal H, the first derivative of the expected cost with respect to H 

must be zero. 

dE C
dH 0 

After derivation, it is interesting that the right hand-side of Eq 4-17 keeps exactly the 

same as that in Eq 4-3. Intuitively, the H for two products portfolio will be smaller than H 

for one product portfolio due to the fact that both portfolios’ optimal hedging amount 

share the same quantity as the results of their cumulative distribution function. 

P x P x dx dx
P P

P Salv% P  

Eq 4-17 

The same thing can be observed for the most general portfolio of n products as shown in 

Eq 4-18.  

P x …P x dx …dx
P P

P Salv% P  

Eq 4-18 
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It is analogous to the financial portfolio diversification, the more diversified portfolio you 

have, the less exposure you have towards demand uncertainty for metal producers.  

In summary, the discussion in the end of 4.5 validates the economical and environmental 

benefits of the explicit consideration of demand uncertainty observed in chapter 3’s case 

studies. It also provides us a theoretical tool to evaluate the impacts on the optimal 

hedging practice from various factors such as scrap cost advantage, salvage value, 

coefficient of variance of uncertain demand, etc.  The last not the least, the analytical 

work on the simplest case scenario also provides us a solid foundation for future 

exploration into more realistic cases. 
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5 Case Study and Analysis of Scrap Commonality 

After the understanding for the simplified one product, one scrap case analytically in 

chapter 4, it is interesting to notice that when multiple products exist in one portfolio with 

multiple scraps available such as cases in chapter 3, in addition to the fact that the 

recourse-based model generates batch plans that increase potential scrap consumption 

(see Table 3.4 and Table 3.5), the percentage increase varies significantly across every 

scrap usage in either portfolio. It is hypothesized that this variation across scraps emerges 

due to differences in the degree of common usage7 of each scrap across multiple products 

in the portfolio. Such behavior will be extensively examined by a case study including 

four different scenarios in this chapter and will be further quantitatively explored in the 

discussion chapter. Using the same set of scraps as in last chapter, a different set of 

products is selected to either share scraps or not. The four scenarios are as following. 

1) All products in the portfolio do not share scraps (product-specific scraps). 

2) Products are sharing the same set of scraps. 

3) Products in the portfolio have common scraps and product-specific scraps. 

In order to keep the case study simple and illustrative, in each of the four scenarios the 

portfolio only contains two products. 

                                                            
7 Commonality in this chapter refers to the fact that products are preferably using the same scrap if they 
are considered separately in a one product portfolio. 
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5.1 Case study on scrap commonality 

5.1.1 No scrap commonality among products in the portfolio. 

For the example, the product portfolio consists of aluminum alloys 3010 and 4010. If 

each of them is considered separately in a one product portfolio, the comparisons 

between mean-based model and recourse-based model are shown in Table 5-1.  

Table 5-1 Comparison for 3010 and 4010 considered separately in one product portfolio 

Product Name 3010     
Scrap Mean-based Model Recourse Model % 
5***Scrap 0 0   
Litho sheets 2.412433052 2.77429801 15%
Mixed Casting 0 0   
UBC 0 0   
Painted Siding 0 0   
Product Name 4010    
Scrap Mean-based Model Recourse Model % 
5***Scrap 0 0   
Litho sheets 0 0   
Mixed Casting 0 0   
UBC 0 0   
Painted Siding 4 4.6 15% 

 

Notably, Litho sheets are selected to produce 3010, while Painted Siding is selected for 

product 4010. Thus, there would be no commonality if both 3010 and 4010 were put 

together in one portfolio. Table 5-2 compares the production plans created when both 

alloys are considered separately. 
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Table 5-2 Comparison between two products portfolio and the sum of one product portfolio 

Two Products Portfolio Comparison 
Portfolio with 3010 & 4010 considered simultaneously 
Scraps  Mean-based Model Recourse Model % 
5***Scrap  0 0   

Litho sheets  2.412433052 2.77429801 15%

Mixed Casting  0 0   

UBC  0 0   

Painted Siding  4 4.6 15%

Sum of separate single product portfolios Comparison 
Scraps  Sum Mean‐based  Sum Recourse  % 
5***Scrap  0 0   

Litho sheets  2.412433052 2.77429801 15%

Mixed Casting  0 0   

UBC  0 0   

Painted Siding  4 4.6 15%
 

The results shown in Table 5-2 suggest that when there is no commonality of raw 

materials among the product portfolio, there is no interaction among the hedging 

strategies even when they are considered together. This observation combined with the 

results of the case studies from the previous chapter leads to the following hypothesis. 

Hypothesis 1: The total inventory level and the hedging ratio of scraps that are used by 
multiple products (i.e., with commonality in usage) will be lower than for scraps that are 
product-specific. 
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5.1.2  Products share the same set of scraps in one portfolio 

The second scenario involves the same set of scrap, but two different products – 3105 and 

6060. If each product is considered separately in a one product portfolio, the comparisons 

between the production plans from the mean-based and the recourse-based model are 

shown in Table 5-3. 

Table 5-3 Comparison for 3105 and 6060 considered separately in one product portfolio 

Product Name 3105     
Scrap Mean-based Model Recourse Model % 
5***Scrap 0 0   
Litho sheets 0 0   
Mixed Casting 1.006642662 1.157639061 15%
UBC 0 0   
Painted Siding 4.993357338 5.742360939 15%
Product Name 6060     
Scrap Mean-based Model Recourse Model % 
5***Scrap 0 0   
Litho sheets 0 0   
Mixed Casting 1.061544793 1.220776512 15%
UBC 0 0   
Painted Siding 6.938455207 7.979223488 15%

 

For both models, both of the products share Mixed Casting and Painted Siding as their 

preferred scrap raw materials, albeit in different recipes. If they were put in the same 

portfolio and considered simultaneously, the results are shown in Table 5-4. This time the 

hedging ratio for both scraps significantly decreases in a different pace.  This observation 

leads to a second hypothesis. 

 Hypothesis 2: The hedging ratio for scraps with commonality will decrease. 
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Table 5-4 Comparison between two products portfolio and the sum of one product portfolio 

Two Products Portfolio Comparison 
Portfolio  3010 & 4010       
Scraps  Mean-based Model Recourse Model % 
5***Scrap  0 0   

Litho sheets  0 0   

Mixed Casting  2.068187455 2.227419174 8%

UBC  0 0   

Painted Siding  11.93181254 12.97258083 9%

Sum of one product portfolio Comparison 
Scraps  Sum Mean‐based  Sum Recourse  % 
5***Scrap  0 0   

Litho sheets  0 0   

Mixed Casting  2.068187455 2.378415573 15%

UBC  0 0   

Painted Siding  11.93181254 13.72158443 15%
 

5.1.3 Some scraps are shared, some unshared within one portfolio. 

Batch plans for both aluminum alloys 2007 and 3007, if considered alone, will 

incorporate the same set of scraps, i.e. UBC and Painted Siding, but the batch plan for 

3007 will also incorporate an additional scrap Litho Sheets, as shown in Table 5-5. When 

considered together in the same portfolio, the production plans for these scraps displays 

some interesting trends. Specifically, the hedging ratios for both common scraps shrink 

from 15% to 8% and 9%, respectively, while the hedging ratio for the product-specific 

Litho Sheets jumps to 21%.  Again, this leads to a specific hypothesis about the behavior 

of these problems. 

Hypothesis 3: If there are scraps shared by multiple products, the hedging ratio for the 
product-specific scraps needs to be increased comparing to one product portfolio hedging 
ratio. 

These three hypotheses will be qualitatively tested in the next section. 
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Table 5-5 Comparison for 2007 and 3007 considered separately in one product portfolio 

Product Name 2007     
Scrap Mean-based Model Recourse Model % 
5***Scrap 0 0   
Litho sheets 0 0   
Mixed Casting 0 0   
UBC 4.697663988 5.402313586 15%
Painted Siding 14.58554879 16.77338111 15%
Product Name 3007     
Scrap Mean-based Model Recourse Model % 
5***Scrap 0 0   
Litho sheets 2.929210871 3.368592502 15%
Mixed Casting 0 0   
UBC 6.622740312 7.616151359 15%
Painted Siding 5.650729324 6.498338722 15%

 

Table 5-6 

Two Products Portfolio Comparison 
Portfolio  2007 & 3007       
Scraps  Mean-based Model Recourse Model % 
5***Scrap  0 0   

Litho sheets  2.929210871 3.60467236 23%

Mixed Casting  0 0   

UBC  11.3204043 12.31381535 9%

Painted Siding  20.23627812 21.79846063 8%

Sum of one product portfolio Comparison 
Scraps  Sum Mean‐based  Sum Recourse  % 
5***Scrap  0 0   

Litho sheets  2.929210871 3.368592502 15%

Mixed Casting  0 0   

UBC  11.3204043 13.01846495 15%

Painted Siding  20.23627812 23.27171983 15%
 

5.2 Qualitative analysis of scrap commonality 

Notably, the hedging ratios for all of those one product portfolios considered were the 

same at 15%. This is attributed to two major factors. The first one is described by Eq 4-5, 
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i.e. the linear relationship between hedging ratio and coefficient of variance which is 11% 

for all cases in this chapter. The second major factor is that the number of discrete states 

for all cases above is the same, Figure 3-11 suggests a similar hedging ratio level should 

be applied to all. Therefore, in spite of slight differences between scraps and primary 

materials, their effects are orders of magnitude insignificant than the coefficient of 

variance factor and will then be diminished by the second granularity factor. Thus, for 

simplicity, the same symbol “HR” will be assigned for all hedging ratios in one product 

portfolios under the same demand uncertainty in the analysis hereafter.  

“Safety stock” is a concept in the inventory management field analogous to the hedging 

ratio discussed in this thesis. In 1986, Baker et al proposed to investigate optimal stock 

setting policy within an inventory-minimizing model with a multi-product service–level 

constraint. They considered an example of two products with independent and uniformly 

distributed demands, and solved it with and without commonality for two multi-product 

extensions of an occurrence-based service-level measure. Specifically, the measures they 

considered were the probability of meeting all demands simultaneously (the aggregate 

service level) and the lowest probability of meeting individual demands (the bottleneck 

measure). In their example, with both measures, they identified three properties. 

Property 1: The introduction of commonality reduces the total inventory required to meet a 
specified service level. 

Property 2: The optimal stock of the common component is lower than the combined 
optimal stocks it replaces. 

Property 3: The combined optimal stocks of product-specific components are higher with 
commonality than without. 

The scrap problem pre-purchase decision is not exactly the same as Baker’s components 

problem. First of all, the service level concept does not hold in the problem at hand. 



78 
 

Strictly speaking, as the purchasing and mixing problem is framed, customer demands 

can be met completely under any demand conditions just by using primary materials to 

make up the residual demands if scraps stock out. Secondly, instead of strictly holding to 

components to make finished products without alternative solutions in Baker’s problem, 

finished alloys can be made by many more alternative combination of other scraps and 

primary raw materials if the best fitting scrap were not available. However, if a service 

level of scrap inventory were defined as the probability of scrap can meet all demands 

without bringing in primaries, and only a limited set of scrap were available so that there 

are no alternative scraps, Baker’s conclusions (three properties) can be made a direct 

analogy to the scrap usage case, which are also quite in line with the three hypotheses 

concluded from the case study earlier this chapter. However, the properties concluded by 

Baker are based on a series of assumptions which might affect the validity for a more 

general case. Baker assumed a uniform distribution of the demand over an interval which 

is not as realistic as normal distribution or other more sophisticated joint probability 

distribution.  A second strong assumption is that Baker only considered two products 

with two components each, so do all the case studies in this chapter. Therefore, these 

properties and hypotheses will be qualitatively examined given an arbitrary number of 

products and any joint demand distribution.  

Suppose one producer is producing n products, each of which has a random distribution 

of demand X1, … .Xn  with joint distribution function F. The mean demand for each 

product is  x1, … , xn . Each of products is produced using two scraps, one of which is 

product specific; the other is common to all products. The unit cost of product i’s specific 

scrap is Pi, while the cost of the common scrap is Pc. To make product i, fi of the common 
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scrap and (1-fi) of the other scrap are needed. What is being compared here is the sum of 

all scraps for all n products if they were considered separately (“the sum of separate 

scenario”) and the total scrap quantity if all products were in the same portfolio and 

considered together(“multi-product portfolio scenario”). We further assign symbols “HRc” 

and “HRi” for the hedging ratio for the common scrap and that of the product-specific 

scraps in the multi-product portfolio scenario. 

Using the mean-based model without demand uncertainty, the scrap costs will have the 

same results for both scenarios. 

Sum of separate scenario: ∑ fi · Pc 1 fi · Pi · xi
n
i 1  

Multi-product portfolio scenario: 

fi · Pc · xi

n

i 1

1 fi · Pi · xi

n

i 1

fi · Pc 1 fi · Pi · xi

n

i 1

 

If the demands were considered as a series of distribution X1, … .Xn for n products, with 

means at x1, … , xn. The costs for both scenarios can be expressed as: 

Sum of separate scenario: 

Minimize ∑ fi · Pc 1 fi · Pi · xi
n
I 1 · 1 HR   ∑ fi · Pc · xi

n
i 1 · 1 HR

∑ 1 fi · Pi · xi
n
i 1 · 1 HR  

Eq 5-1 

Such that the service level (SL) meets a minimum specfication: SL HR 8 s 

                                                            
8  A superscript * means the optimal of the quantity.  
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Multi-product portfolio scenario: 

Minimize  ∑ fi · Pc · xi
n
i 1 · 1 HRc ∑ 1 fi · Pi · xi

n
i 1 · 1 HRi  

Eq 5-2 

Such that: SL HRc ,HR1, … ,HRn s 

where SL is some non-decreasing function of the HR’s, which depends on the joint 

distribution function F.  

With all symbols defined, three hypotheses proposed earlier this chapter can be restated 

symbolically for the sake of proving as following. 

Hypothesis 1:  

fi · Pc · xi

n

i 1

· 1 HRc 1 fi · Pi · xi

n

i 1

· 1 HRi

fi · Pc · xi

n

i 1

· 1 HR 1 fi · Pi · xi

n

i 1

· 1 HR  

Hypothesis 2: HRc  HR  

Hypothesis 3: HRi  HR  

The relationship between HRc and HRi  will play an important role in testing the validity 

of the hypotheses. Firstly not that there is no point to buy more common scraps than 

product specific scraps out of their optimal proportions, i.e. fi’s, since costs of residual 

common scraps will not bring benefits when all product-specific scraps stock out. 

Oppositely, common scraps can be pre-purchased comparatively less due to risk pooling. 

It is less likely to have all products see high demand at the same time. Therefore, the 
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optimal solution of the multi-product portfolio scenario (HRc ,HR1, … ,HRn) ought to be 

such that 

 ∑ HRc
n
i 1 ∑ HRi

n
i 1  

Eq 5-3 

Since one could do at least well in the multi-product scenario, by simply setting both 

HRi  and HRc HR and treating the common scrap as if it were product specific to any 

products, we must have the minimized Eq 5-2  Eq 5-1 as following. 

fi · Pc · xi

n

i 1

· 1 HRc 1 fi · Pi · xi

n

i 1

· 1 HRi

fi · Pc · xi

n

i 1

· 1 HR 1 fi · Pi · xi

n

i 1

· 1 HR  

Eq 5-4 

This is a qualitative proof of the Hypothesis 1. 

The symbolic statement of the Hypothesis 2 would be HRc  HR , which can be 

expanded to ∑ fi · Pc · xi
n
i 1 · 1 HRc ∑ fi · Pc · xi

n
i 1 · 1 HR , i.e. the comparison 

of the first term on both sides of the inequality in Hypothesis 1 above. This is not always 

true if the second terms on both sides are not certain. 

The similar conclusion can be drawn for Hypothesis 3. The symbolic expression is 

HRi  HR , which can be further expanded into ∑ 1 fi · Pi · xi
n
i 1 · 1 HRi

∑ 1 fi · Pi · xi
n
i 1 · 1 HR .  
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Conceptually, an example can be built to make ∑ 1 fi · Pi · xi
n
i 1 · 1 HRi

∑ 1 fi · Pi · xi
n
i 1 · 1 HR  and ∑ fi · Pc · xi

n
i 1 · 1 HRc ∑ fi · Pc · xi

n
i 1 · 1

HR  at the same time. 

However, if we assumed the same price for product specific scraps, Eq 5-4 will become 

the following. 

Pc · fi · xi

n

i 1

· 1 HRc Pi · 1 fi · xi · 1 HRi

n

i 1

Pc · fi · xi

n

i 1

· 1 HR Pi · 1 fi · xi

n

i 1

· 1 HR  

Bring Eq 5-3 into the left side of the above inequality,  

Pc · fi · xi

n

i 1

· 1 HRc Pi · 1 fi · xi · 1 HRi

n

i 1

Pc Pi · fi · xi

n

i 1

· 1 HRc  

Then compare with the right ride of the inequality:  

Pc Pi · fi · xi

n

i 1

· 1 HRc   Pc Pi · fi · xi

n

i 1

· 1 HR  

Thus, we get the same conclusion as Hypothesis 2:  HRc  HR . 

In order to examine the validity of the Hypothesis 3 under the equal price assumption, 

proof is shown below. Since (HRc ,HR1, … ,HRn) is a feasible solution for multi-product 

portfolio scenario, pre-purchasing  xi · 1 HRi  amount of two scraps for each product 
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in the sum of separate scenario must also be a feasible solution which make the total cost 

as ∑ Pc · f
i

Pi · 1 fi · x
i

n
i 1 · 1 HRi  . It must be no better than using optimal 

solution (HR )  which leads to the total cost  ∑ Pc · f
i

Pi · 1 fi · x
i

n
i 1 · 1 HR . 

Thus, ∑ HRi
n
i 1  n · HR . In stead of proving HRi  HR , only the average of hedging 

ratios for product-specific scraps is proved to be larger than the optimal one product 

portfolio hedging ratio. 

In all cases earlier this chapter, the hypotheses held despite the differences in scrap prices 

because the price differences were not big enough. 

In summary, four propositions are proved. 

Proposition 1: When products do not have overlap on scrap usage if considered alone, 

they follows rule of superposition if put into the same portfolio. 

Proposition 2: Whenever commonality exists in scrap usage, the total inventory level of 

scraps / costs on scraps will be lower than the scenario if all scraps are product-specific. 

Proposition 3: If products are using the same set of scraps, the hedging ratio will shrink 

compared to that in one product portfolio.  

Proposition 4: If there are scraps shared by multiple products, the average hedging for the 

product-specific scraps needs to be increased. 
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6 Discussion 

6.1 Scrap service level as an equivalent measure as cost 

As discussed in chapter 4, the service level concept does not strictly hold for the problem 

being considered in this thesis – raw materials purchasing and use by a remelter. Strictly 

speaking, within the models described herein customer demands can be met completely 

even if demands were too high to be covered by pre-purchased scraps, since producers 

can just buy primary materials to make up the residual demands. However, if we defined 

the scrap service level as the probability that the scrap inventory is sufficient to meet the 

total demands without introducing excess primary materials, the concept not only 

becomes meaningful again, but brings an alternative measurement of the objective 

function as well.  

In a normal context, service level is a performance measure that the service provider sets 

arbitrarily to achieve. Depending on the market for a particular firm, optimal service 

levels may be either high or low. Nevertheless, in this case, the scrap service level has an 

optimal value within the recourse model framework established by the operational and 

factor characteristics. As discussed earlier, alloy demands can be met completely anyway, 

producers have no reason not to pursue the optimal scrap service level.  

As developed in chapter 5, Eq 4-3 ϕD,σ2 H Pp Ps

Pp Salv% Ps
 is the expression of the optimal 

scrap service level, since ϕD,σ2 H  is the probability that scrap inventory will not run out. 

For the case being considered, it is equivalent to minimize costs by seeking the optimal 

scrap service level. This is also a reason why it makes sense to use service levels, SL, in 
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chapter 4 when commonality was studied qualitatively. If SL were set to be the optimal 

scrap service level, the criteria is the same as cost minimization which is employed in 

other parts of the thesis. 

6.2 Alternative explanation of commonality’s impact on hedging ratio 

As observed in the case study on commonality in Chapter 5, if commonality of the usage 

of scraps among products exists, the aggregate hedging ratio including all scraps for the 

portfolio is significantly lower than that of one product portfolios. In addition, the 

hedging ratios for those common scraps vary, some are relatively more than that of one 

product portfolio (i.e. 15% in the case study), while others are less, or even go down to 

zero. The overall reduction can be understood as follows. If one scrap is used to hedge 

against two products’ demand uncertainty, instead of considering the demand variances 

of the two products separately, the joint demand uncertainty needs to be considered. 

Mathematically, if the assumption that every product’s demand uncertainty is similar, the 

joint effective demand uncertainty for multiple products portfolio must be smaller than 

that of a portfolio including only one product. Intuitively, in a multiple products portfolio, 

undesirable events happening on every single product will be much more unlikely than in 

a single product portfolio. The argument is actually proved symbolically in 4.6.  
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7 Conclusion 

The main idea explored in this thesis has been the hedging pre-purchase of secondary 

materials recommended by a recourse-based stochastic model compared to a traditional 

mean-based model. Firstly, the economic and environmental benefits were demonstrated 

by a case study considering both a cast alloy production portfolio and a wrought alloy 

portfolio simultaneously. Secondly, the hedging ratio was explored analytically for a 

simplified scenario. The analytical expression for the hedging ratio behaves consistently 

with more complicated case study results. Thirdly, the impacts of commonality of scrap 

usage among products was demonstrated through a series of case studies and qualitatively 

concluded with three propositions.  

7.1 Recourse-based scrap purchasing strategy 

Hedging in the context of this thesis is the action of buying a basket of scrap materials in 

additional to the set implied by expected production requirements. This action is 

supported by the batch plans developed by a recourse-based model that brings out the 

option values of scraps and intimately ties that options value to the underlying demand 

uncertainty, salvage value and price differential between primary and secondary materials.  

Under favorable conditions of high demand uncertainty, high salvage value and large 

price differential between primary and secondary materials, the intensity of hedging 

increases as do the option values.  Hedging through additional scrap purchases capitalizes 

on this hidden value and provides cost savings as well as scrap consumption benefits.  

When the option value is positive, it pays to purchase extra scrap beyond what is 

typically implied by deterministic analyses, thereby also directly leading to greater scrap 

consumption.  The driving forces for deriving this option value led to explanations for the 
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sensitivity of this value on salvage value and price differentials, as well as guidance on 

the frequency of and need for hedge rebalancing.  

7.2 Analytical expression for the hedging behavior 

A universal equation for the hedging ratio HR has been concluded in chapter 4.  

HR √2 CoV erf 1
1 1 Storage% Pm s

PAl

1 1 Storage% Pm s
PAl

 

When Es ≤ Emin, Ems =  Emin, Pm s
1 Emin
1 Es

Ps
Emin Es

1 Es
PMg. 

When Emin<Es≤Emax, Emods=Es, Pmods=Ps. 

When Es>Emax, Ems=Emax, Pm s
Emax

Es
Ps

Es Emax
Es

PAl. 

When comparing to the results of the case study in chapter 3, the behavior of this 

analytical solution is satisfactorily consistent with the fully developed model results.  

7.3 Hedging behavior for scraps with commonality 

Commonality in scrap usage across products allows for risk pooling and, thus, reduces 

costs by reducing the scrap hedging ratio while achieving the optimal scrap service level. 

Four propositions concerning the implications of commonality were developed and 

qualitatively proved.  

Proposition 1: When products do not have overlap on scrap usage if considered alone, 

they follows rule of superposition if put into the same portfolio. 
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Proposition 2: Whenever commonality exists in scrap usage, the total inventory level of 

scraps / costs on scraps will be lower than the scenario if all scraps are product-specific. 

Proposition 3: If products are using the same set of scraps, the hedging ratio will shrink 

compared to that in one product portfolio. 

Proposition 4: If there are scraps shared by multiple products, the average hedging for the 

product-specific scraps needs to be increased. 

The benefits of commonality can also be illustrated from the intuition that a joint 

probability distribution of demands for multiple products, which are assumed to have 

independent demand probability distribution for simplicity, has significantly lower 

aggregate variance than the variance of one products’ uncertain demand as shown in Eq 

4-18. 
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8 Future work 

The final destiny of the work is to conclude a generally applicable analytical or empirical 

expression that can direct the decision making process of alloy producers (also, 

secondary aluminum consumer) to better factor in demand uncertainty to maximize scrap 

usage while cutting costs. This thesis serves as a step to achieve this goal, which 

examined economic and environmental benefits in the secondary materials consumption 

by explicitly considering demand uncertainty using recourse-based model. The suggested 

action is to buy an excess amount of scrap to weather higher demand than forecasts, 

which is referred to hedging.  

In chapter 4, the developed analytical expression predicts well the results of the complete 

model results. However, this analytical result can only be a starting point for theoretical 

exploration due to the fact that it is only based on a much simplified case scenario with 

one product one scrap and one element specification. The future goal would be to 

develop an expression for the hedging ratio expression for a case including multiple 

products, all major elemental specifications, and a complete set of scraps. 

In chapter 5, the impacts of commonality were demonstrated and four propositions were 

qualitatively proved. However, the exact quantitative descriptions of the impacts were 

still unclear. In addition, the series of case studies only examined a simple two products 

portfolio. A more complicated behavior was observed in the larger scale case study in 

chapter 2. The next step of the work on this aspect would be both expanding the scale of 

the multiple products portfolio and more precisely describing the impact of commonality. 
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In addition to topics covered in the thesis, there are also some other related interesting 

aspects untouched due to the time limitation. For example, the scraps are assumed to be 

always available if needed, but in practice, the availability of secondary materials is 

subject to a variety of constraints. The effects of the availability constraint might also 

play a meaningful role in the whole decision making process.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

9 References 

(2005, December 1, 2005). "Metals commodities pricing." from www.lme.com. 
  
(2005). "Waste online." from 
http://www.wasteonline.org.uk/resources/InformationSheets/metals.htm  
  
(2008). "Aluminum Recycling." from http://www.world-
aluminium.org/Sustainability/Recycling. 
  
Al-Futaisi, A. and J. R. Stedinger (1999). "Hydrologic and economic uncertainties and 
flood-risk project design." Journal of Water Resources Planning and Management-Asce 
125(6): 314-324. 
  
Arrow, K. J., T. Harris, et al. (1951). "Optimal Inventory Policy." Econometrica 19(3): 
250-272. 
  
Atkins, C. (2005). "Charles Atkins on inventory management topics: Safety Stock." 
Inventory Management Review. 
  
Baker, K. R., M. J. Magazine, et al. (1986). "The Effect of Commonality on Safety Stock 
in a Simple Inventory Model." Management Science 32(8): 982-988. 
  
Bassok, Y., R. Anupindi, et al. (1999). "Single-Period Multiproduct Inventory Models 
with Substitution." Operations Research 47(4): 632-642. 
  
Cai, L., J. Chen, et al. (2004). "Single-period two-product inventory model with 
substitution: Solution and properties." Journal of Systems Science and Systems 
Engineering 13(1): 112-123. 
  
Cattani, K., G. Ferrer, et al. (2003). "Simultaneous production of market-specific and 
global products: A two-stage stochastic program with additional demand after recourse." 
Naval Research Logistics 50(5): 438-461. 
  
Choobineh, F. and E. Mohebbi (2004). "Material planning for production kits under 
uncertainty." Production Planning & Control: 63-70. 
  
Clark, A. J. and H. Scarf (1960). "Optimal Policies for a Multi-Echelon Inventory 
Problem." Management Science 6(4): 475-490. 
  
Collier, D. A. (1982). "Aggregate Safety Stock Levels and Component Part 
Commonality." Management Science 28(11): 1296-1303. 
  
Cosquer, A. and R. Kirchain (2003). Optimizing The Reuse Of Light Metals From End-
Of-Life Vehicles: Lessons From Closed Loop Simulations. TMS Annual Meeting 2003. 
S. K. Das. San Diego, TMS. 



94 
 

  
Datta, J. (2002). Aluminium-Schlüssel (Key to aluminium alloys). Düsseldorf, 
Aluminium-Verlag. 
  
de Neufville, R. (2004). Uncertainty Management for Engineering Systems Planning and 
Design. MIT Engineering Systems Symposium. Cambridge, MA, MIT Engineering 
Systems Division. 
  
Dogramaci, A. (1979). "Design of Common Components Considering Implications of 
Inventory Costs and Forecasting." IIE Transactions 11(2): 129 - 135. 
  
Dupacova, J. (2002). "Applications of stochastic programming: Achievements and 
questions." European Journal of Operational Research 140(2): 281-290. 
  
Dvoretzky, A., J. Kiefer, et al. (1952). "The Inventory Problem: I. Case of Known 
Distributions of Demand." Econometrica 20(2): 187-222. 
  
Gallego, G., K. Katircioglu, et al. (2006). "Semiconductor inventory management with 
multiple grade parts and downgrading." Production Planning and Control 17: 689-700. 
  
Gardner, D. T. and J. A. Buzacott (1999). "Hedging against uncertainty in new 
technology development: the case of direct steelmaking 
Hedging against uncertainty in new technology development: the case of direct 

steelmaking." Engineering Management, IEEE Transactions on 46(2): 177-189. 
  
Geldof, G. D. (1997). "Coping with uncertainties in integrated urban water management." 
Water Science and Technology 36(8-9): 265-269. 
  
Gesing, A., B. AuBuchon, et al. (2003). Assuring Continued Recyclability of Automotive 
Aluminum Alloys: Chemical-Composition-Based Sorting of Wrought and Cast Al Shred. 
Aluminum 2003, San Diego, CA, TMS; 2003. 
  
Gesing, A., L. Berry, et al. (2002). Assuring Continued Recyclability of Automotive 
Aluminum Alloys: Grouping of Wrought Alloys by Color, X-Ray Absorption and 
Chemical Composition-Based Sorting. Automotive alloys and aluminum sheet and plate 
rolling and finishing technology; Aluminum 2002, Seattle, WA, Minerals Metals 
Materials Society; 2002. 
  
Gesing, A., P. Torek, et al. (2003). Assuring Recyclability of Automotive Magnesium 
Alloys: Chemical Composition-Based Sorting of Magnesium Shredded Scrap. Aluminum 
2003, San Diego, CA, TMS; 2003. 
  
Geunes, J. (2003). "Solving large-scale requirements planning problems with component 
substitution options." Computers & Industrial Engineering 44(3): 475-491. 
  



95 
 

Gorban, L. R., G. K. Ng, et al. (1994). An In-Depth Analysis of Automotive Aluminum 
Recycling in the Year 2010. SAE International Congress and Exposition. Detroit, 
Michigan, USA, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, USA. 
  
Graves, S. C. (1987). Safety Stocks in Manufacturing Systems. 
  
Growe, N., W. Romisch, et al. (1995). "A Simple Recourse Model for Power Dispatch 
under Uncertain Demand." Annals of Operations Research 59: 135-164. 
  
Guide Jr, V. D. R. and R. Srivastava (2000). "A review of techniques for buffering 
against uncertainty with MRP systems." Production Planning & Control 11(3): 223-233. 
  
Kelly, T., D. Buckingham, et al. (2005). Historical Statistics for Mineral and Material 
Commodities in the United States, U.S. Geological Survey, US Dept of Interior, Reston, 
VA. Open-File Report 01-006. 
  
Keoleian, G. A., K. Kar, et al. (1997). Industrial Ecology of the Automobile: A Life 
Cycle Perspective. Warrendale, PA, Society of Automotive Engineers, Inc. 
  
Kira, D., M. Kusy, et al. (1997). "A stochastic linear programming approach to 
hierarchical production planning." Journal of the Operational Research Society 48(2): 
207-211. 
  
Lund, J. R., G. Tchobanoglous, et al. (1994). "Linear Programming for Analysis of 
Material Recovery Facilities." Journal of Environmental Engineering 120(5): 1082-1094. 
  
Martel, A. and W. Price (1981). "Stochastic-Programming Applied to Human-Resource 
Planning." Journal of the Operational Research Society 32(3): 187-196. 
  
Maurice, D., J. A. Hawk, et al. (2000). Thermomechanical Treatments for the Separation 
of Cast and Wrought Aluminum. Fourth International Symposium on Recycling of 
Metals and Engineered Materials. Pittsburgh, PA, TMS. 
  
Mesina, M. B., T. P. R. d. Jong, et al. (2004). New developments on sensors for quality 
control and automatic sorting of non-ferrous metals. 11th Symposium on Automation in 
Mining, Mineral and Metal processing (MMM - IFAC 2004). Nancy, France, 
International Federation of Automatic Control. 
  
Peterson, G. D., G. S. Cumming, et al. (2003). "Scenario planning: a tool for conservation 
in an uncertain world." Conservation Biology 17(2): 358-366. 
  
Petruzzi, N. C. and M. Dada (2001). "Information and Inventory Recourse for a Two-
Market, Price-Setting Retailer." Manufacturing & Service Operations Management: 242-
263. 
  



96 
 

Ralls, K. and B. L. Taylor (2000). "Better policy and management decisions through 
explicit analysis of uncertainty: New approaches from marine conservation - 
Introduction." Conservation Biology 14(5): 1240-1242. 
  
Reuter, M. A., U. Boin, et al. (2004). "The optimization of recycling: Integrating the 
resource, technological, and life cycles."  56(8): 33-37. 
  
Roberts, P. F. C. a. F. (1983). Metal Resources and Energy, London: Butterworths & Co. 
  
Shih, J. S. and H. C. Frey (1995). "Coal Blending Optimization under Uncertainty." 
European Journal of Operational Research 83(3): 452-465. 
  
Skantze, P. L. and M. D. Ilic (2001). Valuation, Hedging and Speculation in Competitive 
Electricity Markets: A Fundamental Approach, Springer. 
  
Stuart, J. A. and Q. Lu (2000). "A Model for Discrete Processing Decisions for Bulk 
Recycling of Electronics Equipment." IEEE Transactions on Electronics Packaging 
Manufacturing 23(4): 314-320. 
  
Stuart, J. A. and L. Qin (2000). "A refine-or-sell decision model for a station with 
continuous reprocessing options in an electronics recycling center." Electronics 
Packaging Manufacturing, IEEE Transactions on 23(4): 321-327. 
  
van Schaik, A. and M. A. Reuter (2004). "The time-varying factors influencing the 
recycling rate of products." Resources, Conservation and Recycling 40(4): 301-328. 
  
van Schaik, A., M. A. Reuter, et al. (2002). "Dynamic modelling and optimisation of the 
resource cycle of passenger vehicles." Minerals Engineering 15(11): 1001-1016. 
  
van Schaik, A., M. A. Reuter, et al. (2004). "The influence of particle size reduction and 
liberation on the recycling rate of end-of-life vehicles."  17(2): 331-347. 
  
Veit, H. M. (2004). "Utilization of magnetic and electrostatic separation in the recycling 
of printed circuit boards scrap " Waste Management 25(1): 67-74. 
  
 
 


