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Abstract

Materials selection is a complex, but important, problem for manufacturing firms. Poor material
choices can negatively affect the firm’s market share or profits. In the face of this complexity,
most selection methods make a number of simplifications, including limiting problem scope
to selection for a single product or application, and assuming material properties and design
criteria are constant over the problem’s time horizon. Such assumptions, however, do not always
apply, especially when material preference is based on the materials’ “emergent properties,” the
values of which are context-dependent. Consequently, these properties can evolve with changes
in context and potentially alter the preferred material identified by the selection method.

This thesis investigates the impact of considering cost evolution on a firm’s materials selection
decision, and seeks to identify strategies the firm can adopt when introducing new materials
to its products. To that end, a framework for incorporating cost evolution, specifically from
learning, into the materials selection process is proposed and demonstrated using single-product
and multi-product automotive case studies. In the single-product method, material options are
ranked by their respective manufacturing costs. The multi-product problem is more complex
and requires an analytical framework that combines an integer linear program and a genetic
algorithm to select materials for any number of products over a specified time horizon.

Case study results indicate that when selection problem scope is limited to a single product,
accounting for learning in the decision process has minimal impact on the preferred material.
When several products are included in the problem scope, however, the firm is able to leverage
“shared learning” so that experience gained from manufacturing one product can be applied
to lower the costs of other products that share a common resource, such as a manufacturing
process line, with the initial product. Not only does the consideration of shared learning impact
the preferred materials that are suggested by the selection framework, it also helps to better
characterize the circumstances under which the firm should introduce a new material on a test
bed. Additionally, the case study results emphasize the use of one material across multiple
applications and indicate that this approach helps the firm cope with uncertainty in selection
criteria.

Thesis Supervisor: Randolph E. Kirchain
Title: Associate Professor of Materials Science and Engineering
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Chapter 1

Introduction

Materials selection is a common, but important, step in product design. Any manufacturing

firm—or product designer—looking to develop a new product or modify a current will have to

identify an appropriate material for that product, given design criteria that place constraints on

the material’s performance. Choosing an inappropriate material can be a costly mistake for the

firm and can potentially lead to product, or even firm, failure. The extensive literature available

on the topic of materials selection is indicative of the importance of finding a satisfactory material

for a product, as well as the difficulties the firm faces when doing so.

Identifying an appropriate material, however, is a complex problem because materials are

chosen for their properties, their ease of processing, or for the product capabilities they make

possible, rather than because the designer likes “bronze” or “wood.” Consumers, though, are

likely to only care about product attributes enabled by the materials and not about processing or

specific properties. For example, a consumer purchasing a winter coat will choose based on the

coat’s fit, style, and warmth rather than for the specific type of thread the manufacturer uses to

sew the coat together. It is therefore left to the product designer or the firm to assess how the

selection of any given material will influence a product’s attributes and whether the changes in

those attributes are desirable from a cost or consumer preference standpoint.

One of the fundamental concepts in modern materials science states that a connection exists

between a material’s properties and its performance within a product. Equally important are

the material’s structure and the processing it undergoes during product manufacture, both of

which have an effect not only on the material’s performance, but also on its properties, and

17



Structure

Properties

Performance

Processing

Figure 1-1: Materials science tetrahedron illustrating the inter-relationship between performance,
properties, processing, and structure [21, 58].

are themselves inter-related [21, 58]. The inter-relationships among these four qualities is often

depicted with a tetrahedron; arrows in Figure 1-1 indicate direction of influence.

Because of these relationships, a product designer cannot simply look up material proper-

ties in a database and find the one material that best satisfies design criteria. Many properties

are context-dependent because of their relationship to structure and processing. For example,

the environmental impact of a material will vary according to that material’s mining location,

the method of transportation to the manufacturing plant, the product being manufactured, the

manufacturing process flow, the firm’s energy supplier, the operational environment of the firm,

the market conditions the firm faces, and so forth. Secondly, there are usually several materials

that satisfy the design criteria, but likely no single “best” option due to the presence of trade-offs

among the different criteria. These trade-offs force the firm to make sacrifices in some criteria

in order to obtain improvements in others. One common example is the cost-mass trade-off in

which a firm that wishes to reduce its product’s mass will have to invest in more expensive, but

lighter weight, materials such as titanium or carbon fiber composites. The selection problem then

becomes a question of how much is the firm willing to pay for a reduction in mass, or is shifted

to other properties that differentiate the materials. Thus, when selecting a material, a firm has to

18



consider not only the product attributes it is looking to achieve, but also the problem’s context

so it can accurately assess the material’s properties and the trade-offs among different material

options.

Given the difficulty and cost of identifying the right material for a product, firms are un-

derstandably reluctant to switch to a new material without a compelling reason, especially once

they have established that their current choice works—that is, it satisfies design criteria and the

resulting product is appealing to consumers. Firms, however, will still shift to a new material if

there exists a good reason driving the switch—for instance, if the new material is a clear improve-

ment over the current one. This was the case in the 1970s when economic factors and technology

improvements led to the beverage industry’s decision to adopt plastic for soda bottles in place

of glass [55]. Likewise, firms will switch to a new material if they can compensate for the cost of

doing so. For example, certain market segments are often willing to pay a premium for product

attributes enabled by new materials, as often happens with sporting equipment such as tennis

racquets, golf clubs, and bicycle frames [17]. It is worth noting, though, that in some instances,

the attribute consumers are paying for is the sexiness of a new material rather than any notable

gains in performance brought on by the new material.

In general, it is often difficult for a firm to prove conclusively that the benefits of using a

new material outweigh the costs of switching to that material. The absence of a compelling

reason to switch materials, combined with the firm’s conservative behavior, means that it is

difficult for new materials, or materials the firm is not accustomed to using, to gain market share.

Nevertheless, firms may still be forced to consider alternative materials due to rapid changes in

its technology options or operational environment, such as updates in a competitor’s product, or

changes in the market or regulations. These changes force the firm outside its “comfort zone,”

where it will have to move more aggressively, especially with regards to materials selection.

Under these circumstances, the firm will therefore have to redesign its products, and in the

process, identify the best material to use given the altered operational environment.

Partly because of its complexity, materials selection is a well-researched problem and even a

brief literature survey yields a number of selection methods that have been developed to inform

the materials selection decision. These methods are components of a design process that strives to

provide a systematic means to sift through and evaluate potential materials options and identify
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Figure 1-2: Example of a material property chart for Young’s modulus and density [15].

satisfactory options based on design criteria as dictated by desired product attributes. One of

the better-known methods, screening and ranking, has been developed and refined through a

number of studies, most notably Ashby et al. [14]. In this approach, a designer first screens

materials to weed out unsuitable candidates (i.e. materials that are infeasible in the application);

the remaining options are then ranked according to performance indices, which are defined

based on design criteria. For example, a designer seeking to minimize the mass of a beam while

maintaining a specified stiffness will use the index
√

E/ρ (where E is the material’s modulus and

ρ its density) to rank appropriate materials. Plots such as the one in Figure 1-2 can be generated

to aid the designer. In the last step of Ashby’s method, additional information such as case

studies, known applications, and supplier details are gathered on the highest-ranked materials

and used to make a final decision.

Other selection tools include out-ranking approaches such as ELECTRE [66, 69] and TOP-

SIS [42], which set preference and indifference thresholds for materials [19]; and heuristics like

Sapuan’s Knowledge-Based System [67] that define a set of rules or steps a designer can walk

through to identify the preferred material. All of these methods, however, must make assump-
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tions in order to simplify the selection process and arrive at a decision without overwhelming

the designer. Without any simplifications, materials selection would be an even more burden-

some and inefficient process; adding simplifications, on the other hand, makes the process more

manageable and, in most cases, does so without compromising the results. One of these sim-

plifications restricts the problem’s scope to the selection of a single material for use in a single

application within a product. Other products or applications that may also require a new ma-

terial are typically not considered in the selection process of the primary application. Another

common simplifying assumption is that design requirements and material properties do not vary

over the time horizon of the decision, but instead remain fixed at a single value. While this is

valid for most cases, it is not necessarily true for new or unfamiliar materials a firm is forced

to work with: properties of these materials such as manufacturing cost or product performance

can evolve over time as the firm becomes more comfortable using them and refines the product’s

design and manufacturing process.

Parameter evolution over time is particularly relevant in selection processes involving new

materials for what Field et al. [29] term to be emergent properties. These properties are named thus

because they are inherently context-dependent and “emerge” only when the details surrounding

a material’s production and use have been characterized. The context necessary to determine the

value of an emergent property varies according to the property. For some properties, only the

material’s application within the product is necessary; others require more information such as

industry-wide regulations, market prices for raw materials, or consumer behavior. An example

of an emergent property is a product’s safety, which depends on the product’s design as well as

factors external to the firm such as consumer usage. Manufacturing cost is another such property

as it is a function of process parameters like cycle time and reject rate, along with raw material

price, labor wage, and electricity cost.

The context-dependent nature of emergent properties means that, if the context changes over

the decision’s time horizon, so too do the properties and, potentially, the preferred material.

A firm whose selection criteria are based on a material’s emergent properties will therefore

require a selection framework that can account for the evolution over time in these properties.

It is impractical, though, for the framework to consider all the ways material properties and the

selection problem’s context can evolve over time. Variations in some parameters will not affect
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the selection decision, and can be removed in others—for example, through contracts with energy

or raw material suppliers.

Consequently, property evolution will only be considered if it results from learning by doing.

Learning or learning by doing refers to the process of gaining experience through the repetition of

a task—in the case of a manufacturing firm, through designing and manufacturing its products.

This research focuses on learning as the basis for the evolution of emerging properties because

the nature of the process is such that the firm can act to influence the evolution by deliberately

gaining experience. As the firm learns, it applies its experience toward improving its products

and manufacturing processes, which in turn alters the context under which emergent properties

are defined and thereby the values of the properties.

Given that a firm often identifies preferred materials based on material properties that are

affected by learning, such as manufacturing cost and product performance, it is worthwhile

to assess the impact of considering learning on a firm’s materials selection decision. Focusing

on learning as a basis for property evolution has additional benefits in that learning is widely

accepted and has been observed in a number of industries and products (e.g. [37, 43, 52]). Con-

sequently, it is associated with an established framework for evaluating property evolution over

time through its use of cumulative number of units produced as a proxy for the firm’s experi-

ence. The rate and extent of change in an emergent property can then be predicted as a function

of the total number of units a firm has produced by a given point in time. Incorporating this

framework into materials selection can provide a means to account for the evolution over time of

the emergent properties a manufacturing firm uses in its selection process.

Most firms, however, do not explicitly consider learning—let alone other reasons for property

evolution—when selecting a new material. Not only does this incorrectly represent emerging

properties used in materials selection, it also limits a firm’s ability to systematically evaluate

strategies for introducing new materials to their products. One such strategy is the use of a

test bed—typically a low-volume, high-end product which a firm uses to experiment with new

materials or features before expanding their use to other product lines. Experimentation with

test beds enables the firm to learn, either by gaining experience with, or by obtaining information

(e.g. market research) about, the new material. Both help the firm improve its products as well

as its profits, but only the former implies that the firm believes material properties will evolve: if
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properties were invariant, as traditional selection methods assume, the firm would not use a test

bed to gain experience because there would be no benefit to doing so.

The use of test beds in industry indicates that firms recognize that material properties evolve.

Instead of explicitly accounting for this evolution, though, firms are more likely to rely on expert

judgment to compensate for a traditional selection method’s assumption that material properties

are invariant. Consequently, there is a need for a systematic means to address the evolution of

emergent material properties and the use of test beds in materials selection for product design

and manufacturing.

This thesis therefore proposes to account for property evolution, specifically through the con-

sideration of learning, in the materials selection process. The goal is to better inform the selection

decision and to identify strategies, such as the use of a test bed, a firm can adopt to introduce

new materials to its products. This is accomplished by using the learning framework to develop

a more rigorous treatment of the evolution of emergent properties—in particular, manufacturing

cost—within materials selection. The consideration of learning in the selection process enables a

more accurate representation of each material’s cost and therefore, a better-informed comparison

of current and alternative options. It also allows the assessment of conditions under which learn-

ing will impact the selection decision, as well as strategies a firm can adopt when introducing

new materials and when such strategies are applicable.

1.1 Thesis Outline

The remainder of this thesis presents materials selection methods, illustrated with case studies,

that are aimed at better understanding when the consideration of cost evolution due to learning

impacts the selection decision. Chapter 2 reviews literature concerning traditional materials

selection methods, which assume time-invariant design requirements and material properties

over the decision’s time horizon; a background on learning is also covered in this chapter. The

following chapter presents a framework for incorporating manufacturing cost learning into a

traditional selection method, which is then illustrated with a case study concerning the selection

of a material for the body-in-white of a midsize sedan.

Limiting the selection problem scope to a single application, however, cannot fully capture all

the benefits a firm may realize from learning. It also restricts the potential strategies a firm can
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consider when introducing new materials to its products.

Using a test bed, for instance, would make more sense if the firm were able to apply the

experience it gained to reduce not only the cost of the product used as the test bed, but also

that of other, similar products that share the same resources and or use the same materials as

the first product. Chapter 4 uses a stylized exercise to explore the use of a test bed in more

depth and to motivate scope expansion of a selection problem to encompass multiple products

and explicitly account for the decision’s time horizon. A more formal framework for a multiple-

product selection method that accounts for manufacturing cost evolution through learning is

proposed in Chapter 5. This new selection method is illustrated with two case studies: first, the

stylized exercise from Chapter 4 and second, materials selection for several applications within

an automaker’s fleet. Finally, Chapter 7 summarizes selection approaches and conclusions and

presents potential next steps for this research. Case study details and code for materials selection

algorithms are contained in the appendices.
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Chapter 2

Background

In order to evaluate whether property evolution has any effect on a firm’s preferred materials,

it first helps to understand both the traditional materials selection methods and the learning

framework as a basis for property evolution in manufacturing industries. This in turn enables

the development of a selection framework that incorporates learning and thereby, the assessment

of conditions under which learning will impact a firm’s selection decision. The following chapter

reviews materials selection methods proposed in literature and provides an overview of the

basics of learning.

2.1 Materials Selection

The goal of materials selection tools is to inform a product’s selection decision given design crite-

ria that place constraints on the material’s or product’s performance. Since the material is selected

for its role in the product’s design, criteria are therefore set according to design requirements,

which in turn are determined by consumer demand, manufacturing limitations, regulatory re-

quirements, and so forth. Although its goal is straightforward, materials selection is, in reality,

a complex problem. Part of this complexity arises from the number of properties or attributes a

firm or product designer may have to consider, as well as the number of criteria dictating accept-

able values of said properties. Other problem challenges include the inter-relationship among

properties, processing, structure, and performance (see Figure 1-1); the potentially large number

of materials a designer has to evaluate and select from; and uncertain or unknown properties, or
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ones that cannot be easily quantified [14].

Between this complexity and the importance of materials selection in product design, it is no

surprise that there exists a large body of literature devoted to the topic. Numerous methods have

been proposed for applying selection criteria to potential materials and identifying, if not the best

solution, at least acceptable options. These methods include Ashby’s performance indices [14]

as well as other ranking methods such as TOPSIS [42], ELECTRE [66, 69], GRA [19], and TIES

[46, 63]. Multi-attribute methods like linear programming [49] and utility analysis [40, 64] can

also be used to identify preferred materials based on a designer’s preferences, as can heuristic

methods like CBR [12] and KBS [67]. Other optimization methods that have been applied to the

materials selection problem include mixed integer programming [71], stochastic programming

[36], and genetic algorithms [45, 63].

2.1.1 Literature Gaps

In addition to proposing materials selection methods, available literature also describes strategies

for coping with some of the challenges a firm or designer faces when forced to choose a new

material for its product. For example, some studies describe the application of fuzzy logic to

quantify qualitative properties [20, 77]. Variations of certain methods, such as ELECTRE III,

provide the designer with the necessary tools for handling incomplete or inaccurate material

property data [65]. Even so, many of the methods in literature still have to make assumptions,

such as those presented in the introduction, to simplify the selection process. One of these

simplifications limits the decision scope to the identification of a single material for a single

application or product; the majority of the methods reviewed are formulated around this premise.

A few, however, such as the studies by DeCicco et al. [23, 24], Khajavirad et al. [45], and Roth

et al. [63] are capable of selecting several technologies for implementation on a single product.

Other papers, including work by Owen [59] and the Volpe model [68], all expand the scope even

further to include other products manufactured by the firm or the industry.

Another simplifying assumption made by most selection methods is that material properties,

product attributes, and design criteria are all invariant over the decision’s time horizon. While

this assumption is valid in most cases, is not necessarily true for emergent properties. These

properties are, by definition, context-dependent, so if the context is evolving, the properties are
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as well. While there are many factors that can lead to changes in context over time, this research

focuses on learning by doing as the reason for the change. Unlike other driving forces behind

context—and thereby material property—evolution, the extent to which a firm learns is directly

influenced by that firm’s actions. Consequently, the firm has some control over the process and,

when forced to work with new or unfamiliar materials, can choose to deliberately gain experience

with them through repetition and cause their emergent properties to evolve.

In order to incorporate the evolution of properties, specifically through learning, into the ma-

terials selection process, the selection decision has to be evaluated over the firm’s time horizon.

Most selection methods proposed in literature do not account for the passage of time in the selec-

tion process, let alone address the evolution of material properties or the impact of considering

learning on the preferred materials. Of the few studies that explicitly include a decision time

horizon, none of the selection methods they propose are well-suited to accommodating learning

in the selection process because, with learning, the results are path-dependent in that past actions

can influence future decisions. This path-dependence is due to the learning framework’s use of

cumulative production volume to predict the evolved values of material properties. If these prop-

erties improve with increased cumulative volume, a firm will likely—but not necessarily—favor

a material it has used in the past over a material it has no experience working with because it is

further down the “learning curve” for the former.

Multi-stage programs, such as those developed by Gupta [36] and Li [49], mark the passage

of time by identifying preferred materials based on current parameters (Stage 1), perturbing the

system, and then re-evaluating material preference according to the system’s new state (Stage 2).

While this method can evaluate what happens given one particular path, it does not provide a

means to easily and systematically evaluate and compare different paths (i.e. different perturba-

tions) the system might follow when learning is present. Other publications, like those by Dutta

[26] and Owen [59], use multi-period linear programs to address decision-making over a time

horizon. Linear programs are capable finding an optimal path for a firm, even when problem

parameters vary over the time horizon. Exactly how the parameters vary in any given context,

however, has to be an input to the problem and therefore a known quantity. This is not the case

with learning, when future decisions depend on previous actions due to its use of cumulative

production volume to predict material property values—a non-linear calculation.
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Both gaps discussed above are addressed in the materials selection methods proposed in this

thesis. First, cost evolution due to learning is explicitly incorporated into a traditional, single-

product selection method. The need for a multi-product method that also considers learning is

later motivated and such a method developed. The resulting methods are used to analyze the

impact of considering learning on a firm’s material preferences.

2.2 Learning

A firm’s ability to learn by doing is one of the many reasons a material’s emergent properties

evolve over time and is the focus of this research. Not only has learning been observed in a wide

variety of industries, it also has an already established framework that can be incorporated into

a materials selection method. Additionally, many of the emergent properties that can be affected

by learning, including manufacturing cost and product performance, often factor into a firm’s

materials selection process. This thesis focuses specifically on the evolution of manufacturing

cost due to learning.

In order to discuss learning within materials selection, it helps to first understand what learn-

ing involves and how it can be incorporated into the selection framework. Learning by doing

refers to the observation that as firms—or people—perform a single task repeatedly, they gain

experience at that task and thereby become more proficient at it. Consequently, the cost of per-

forming that task—whether measured in units of time, money, material usage, etc.—decreases

each successive time that task is carried out. This cost can be plotted, often as a function of the

cumulative number of times the task is performed, to create what is known as a learning curve.

A firm that starts using a new manufacturing process therefore begins at the top of the learning

curve; as it gains experience through the production of each additional unit that uses the new

process, it requires fewer resources to produce each subsequent unit and thus moves down the

curve.

An article by Wright [79] concerning learning in the manufacture of aircraft is often cited as

the first publication to frame the concept of learning. Since then, learning has been documented

in various industries and for a number of products, including automotive [43], chemical pro-

cessing [50], semiconductor manufacturing [37, 41], metal products [25], and energy technologies

[52]. Learning curves in these studies plot unit cost, direct labor hours per product, yield, or
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Figure 2-1: Log-linear learning curves for a generic emergent property in log-log and linear
space.

other parameters as a functions of the cumulative number of units produced. A log-linear rep-

resentation is one of the preferred functional forms of the learning curve [18, 81] and has the

equation:

y = yo · xb, b =
log r
log 2

where yo and y are the initial and learned values of a material property, x is the cumulative

volume, and r is the learning rate. Given this functional form, property y decreases by (1− r)

percent every time cumulative volume doubles. Figure 2-1 plots log-linear learning curves for

learning rates of 98%, 95%, 90%, and 80%. S-curves and other functional forms are also used in

learning literature (e.g. [4, 43, 56, 68, 81]).

Often, a curve is simply fitted to cost or labor data and the learning rate (r) estimated from

there. Some literature takes the extra step of investigating the driving forces behind the process

improvements since in order to realize lower costs or other manufacturing process improvements,

a firm has to make changes to that process [51, 57]. For example, improvements in manufacturing

cost can be attributed to changes in process parameters such as cycle time, reject rate, and so forth,

as well as to more efficient design [43]. Some changes are consciously made, whereas others take

place simply because workers perform their tasks more efficiently [37].

Regardless of whether the underlying reasons for the evolution of emergent properties are

known, learning curves are a compact way to model property evolution over time and ought to

be accounted for in the materials selection process to more accurately represent properties like
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manufacturing cost that are known to be influenced by learning. The following chapter presents

an approach for incorporating learning curves for unit manufacturing cost into a traditional

materials selection method.
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Chapter 3

Materials Selection for a Single Product

This chapter presents a possible approach for considering learning in the materials selection pro-

cess for a single product or application. A selection methodology is proposed and subsequently

demonstrated with a case study built around selecting the material for the body-in-white of a

midsize car. A sensitivity analysis of the case study is conducted to determine conditions under

which learning alters the preferred material, and thereby when firms should be concerned about

considering learning.

3.1 Traditional Selection Methodology

The goal of this chapter is to investigate whether the consideration of evolution in manufactur-

ing cost due to learning impacts a firm’s materials selection decision. This is accomplished by

modifying a traditional selection method to account for learning in the selection process. Regard-

less of the method’s specifics, however, it will have to perform the basic functions of a materials

selection tool and identify the best material for a product given design criteria.

To keep things straightforward, a basic ranking approach was chosen for the selection method.

These methods rank materials according to a metric, which in turn is chosen by the firm based

on design criteria. The metric can be something as simple as density or elastic modulus, or can

combine a number of material attributes into a single measure. Typically, ranking methods also

include an initial screening step to eliminate the material options that are clearly unsuitable for

the product. This step, however, is assumed to have already been performed for the analyses
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in this research so that the firm’s options have already been limited to a small set of candidate

materials. The metric is then evaluated for each of these remaining options and the alternatives

ranked according to metric value. Finally, the material associated with the optimal (i.e. highest

or lowest, depending on design criteria) metric value is designated as the preferred option.

3.1.1 Adding Learning

The selection method described above only dictates how the materials are ranked and the pre-

ferred material identified. In order to determine whether the consideration of learning impacts

the ordering of the material options, learning first has to be incorporated into the selection pro-

cess. In the case of the above selection method, this is done through the metric by choosing a

property that is affected by learning and is a concern of all manufacturing firms—namely, man-

ufacturing cost. In this analysis, manufacturing cost is evaluated in three different ways, two of

which are short-term and long-term unit cost. Short-term or unlearned cost represents the initial

cost of a new material or the cost a manufacturer pays when it first starts working with that

material. Conversely, long-term or learned cost is the cost after the firm has done all it could

to improve the manufacturing process and has reached some physical or other limitation that

prevents further evolution in cost. Depending on the process and the firm’s annual produc-

tion volume, it may take years or even decades before a firm’s manufacturing cost reaches its

long-term value and ceases to evolve.

Neither short-term nor long-term unit costs, though, represent the true cost to a firm because

analyses that use these values still make the assumption that cost does not evolve over the de-

cision’s time horizon. That is, the manufacturer pays either each material’s short-term unit cost,

or its long-term unit cost for each unit of product manufactured over the time horizon. The

third way of evaluating manufacturing cost, on the other hand, accounts for cost evolution due

to learning by calculating the total manufacturing cost to the firm over the time horizon. Total

manufacturing cost adds the unit cost of each unit of product manufactured by the firm within

the time horizon. The product’s unit cost is determined by a material’s learning curve, which

defines the path the evolving cost takes from when the material is first used until it becomes

an established technology. Each additional unit the firm produces adds to its experience and,

thus, to its familiarity with a new material—represented by a step along the learning curve. To-
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Figure 3-1: Total manufacturing cost for 90% log-linear learning curve.

tal (undiscounted) manufacturing cost from when a firm first introduces a new material until

the end of the time horizon is therefore the area under the learning curve from when the curve

begins at zero units to the total number of units the firm has produced by the end of its time

horizon. This total cost given cumulative volume is plotted in Figure 3-1 for the log-linear curve

with a 90% learning rate (see the yellow curve in Figure 2-1) and a cumulative volume of 6,000

by the end of the time horizon. The impact of the consideration of learning on a firm’s mate-

rial preference is then assessed by comparing the ordering of the material options when ranked

according to their short- or long-term manufacturing cost to their ordering according to total

manufacturing cost as calculated from each option’s learning curve.

3.2 Case Study: Body-in-White of a Midsize Car

A case study is employed to illustrate the selection method described in the preceding section

and to test whether the consideration of learning can influence a materials selection decision.

The study focuses on an automaker seeking to improve the fuel economy of one of its midsize

cars by reducing the weight of the car’s body-in-white (Figure 3-2) through the use of alterna-

tive materials. An automotive case study is used to provide a real-world example in which a

manufacturing firm is faced with the need to adopt new or unfamiliar materials for its products,

whether because of consumer demand or tighter government regulations that place constraints

on the vehicle’s fuel economy.

This case study deals with an automaker’s desire to find an alternative, lightweight material
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Figure 3-2: A car body-in-white [75].

for the body-in-white of a midsize car that it is planning to manufacture at an annual production

volume of 200,000 units per year over a period of five years. The preferred material is selected

based on its total manufacturing cost over the decision’s time horizon, with lower-cost alterna-

tives considered more desirable. Since all material options are assumed to satisfy the minimum

performance requirements for the body, only their costs matter to the automaker, who prefers

the least expensive option.

It would be more economically accurate, however, to base the decision upon firm profitability

rather than production cost as the two approaches are anticipated to yield identical results in this

case study, provided the automaker is a price taker for its midsize car. The cost minimization

approach also has the added benefit that it does not require knowledge of the vehicle’s price

elasticity of demand for its calculations. Although if the automaker does have knowledge of

the demand curve, it can use that to its advantage and better inform the selection decision by

optimizing for profit. Profit-based analyses are feasible within this framework (see Appendix A

for a discussion of an approach), but are generally not illuminating in the case of materials

selection for a single application.

In order to investigate whether considering learning has any impact on the preferred material,

the unit manufacturing cost of each alternative is evaluated using the three approaches described

in Section 3.1.1: 1) short-term unit cost, before any cost evolution takes place; 2) long-term unit
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cost, after costs have ceased to evolve; and 3) total (evolving) cost over the five-year time frame.

Only the final option explicitly considers cost evolution and, thereby, learning in the decision

metric. In order to be directly comparable to the short- and long-term units costs, the total cost

of each material is scaled by a constant equal to the annual production volume (APV) multiplied

by the sum of the discount factors over the five years or

Average cost factor = APV ·
5

∑
y=1

1

(1 + r)y−1 (3.1)

= 200, 000 · 4.31 = 862, 000

to arrive at an “average” unit cost. The calculation in Equation (3.1) assumes the discount rate,

r = 8%. Once the manufacturing costs have been evaluated, the material options are then ranked

according to each cost calculation approach and the orderings compared. Learning is deemed to

affect the selection decision when the ordering by average cost produces different results from

orderings by either short-term or long-term unit cost.

3.2.1 Case Study Inputs

In this case study, the automaker has a choice of four feasible alternative materials for the body-

in-white of the midsize car: high strength steel, aluminum, glass fiber composite, and carbon

fiber composite. Mild steel is also included in the analysis as it represents the baseline material

the automaker is currently using for the body. The material options are then ranked according

to their total manufacturing costs, and the results analyzed to answer whether the consideration

of learning can help the automaker better inform its selection decision.

Before the options can be ranked, the manufacturing cost of each has to be obtained. Estimat-

ing the manufacturing cost of a vehicle body produced from any of the above materials, however,

is not as simple as multiplying the raw material’s unit price by the body’s mass. Because cost is an

emergent property, its calculation requires additional information beyond a material’s specifica-

tions, including body designs, manufacturing process parameters, plant operational conditions,

and so forth. To this end, data describing body designs for each of the material options were

obtained from various sources and scaled to ensure the final results are comparable. Table 3.1

shows a few high-level attributes for each body design. This data was then entered into process-
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Table 3.1: Lightweight body designs for a midsize car.
Manufacturing Mass Mass Number of

Strategy ID Primary Material Process [kg] [% of MS] Components Source

MS Mild steel Stamping 322 100% 143 [33]
HSS High-strength steel Stamping 243 75% 60 [74]
AL Aluminum Stamping, extrusion 193 60% 111 [44]
GF Glass fiber composite SRIM 219 68% 62 [35]
CF Carbon fiber composite SRIM 138 43% 62 [35]

Annual production volume

Material

Body design

Learning curve
parameters

Time horizon

Process-based
cost models

Learning curve

Total
manufacturing cost

Long-term
Unit manufacturing cost

Short-term
Unit manufacturing cost

Average
Unit manufacturing cost

Compare ranking by...

Selection Method Inputs

Figure 3-3: Schematic of models and other parameters required for calculating manufacturing
cost of car bodies.

based cost models (discussed in more depth in the following section) to predict long-term unit

cost. Short-term unit cost and average unit cost over the five-year time frame are then calculated

based on the material’s long-term cost and learning curve parameters. Figure 3-3 summarizes

the models, learning curves, and other parameters required to calculate manufacturing cost.

PBCM Calculation of Long-Term Manufacturing Cost

Process-based cost models (PBCMs) were employed to predict the long-term unit manufacturing

cost of vehicle bodies at the specified annual production volume of 200,000 units per year. These

process-specific models use detailed data that describe the individual parts of each body design
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to estimate the cost of forming and joining these parts to produce a vehicle body. With the

exception of the assembly (joining) cost model, the process-based cost models take a part to be

manufactured and from there estimate process requirements such as press tonnage and number

of dies necessary to produce a given volume. These requirements, in turn, are combined with

operational conditions for the plant (e.g. number of shifts and downtime) and factor costs (e.g.

raw material price and labor wage) to calculate the unit cost of forming the part. Each part in a

body’s design is cost modeled and the resulting unit costs summed to generate the unit cost of

forming the whole body. The bodies used in this case study required models for the following

manufacturing processes:

v Die casting

v Extrusion

v Stamping

v Structural reaction injection molding (SRIM)

v Tailor-welded blanking (TWB)

Because process-based cost models strive to be predictive, they are very useful in comparing

emerging technologies or design concepts that are not yet standard for a firm. These models

are also valuable for predicting the unit cost of a part over different production volumes. Cost

calculations throughout the models and in their final outputs are broken down into fixed and

variable costs. Fixed costs are amortized over the lifetime of the product, equipment, or building

in order to assign a portion of the cost to each unit or part. If the equipment is non-dedicated,

its amortized cost is spread over multiple parts according to the fraction of its up-time it spends

manufacturing any given part. Cost breakdown within the cost models is as follows:

v Variable costs

F Materials – raw materials that constitute the part itself

F Process materials – materials such as lubricants required by the process

F Labor – wages paid to factory workers (can include benefits)

F Energy – energy required to power the equipment

v Fixed costs

F Main and auxiliary equipment – equipment such as presses
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Table 3.2: Exogenous cost model assumptions.
Parameter Value

Working days per year 235 days
Labor wage $35 / hr
Energy cost $0.07 / kWh
Building unit cost $1,500 / sq m
Interest 8%
Working capital period 3 months
Product life 5 years
Equipment life 13 years
Building life 40 years
Indirect workers per direct worker 0.25
Indirect workers per line 1
Idle space 25%
Capacity utilization 100%

F Tooling – tools or dies specific to the part

F Building – cost for the factory

F Maintenance – upkeep of equipment, tools, and the building

F Overhead – overhead labor

F Working capital cost – invest first then earn

The usefulness of the cost model results depends on the model’s assumptions. Variations in

factors such as forming reject rate, labor wage, material formability, and raw material price can

all potentially affect cost. Tables 3.2 and 3.3, respectively, list exogenous model assumptions and

material prices used in this study. These numbers, along with other process-specific inputs, take

a long-term perspective on the manufacturing process, meaning that they assume the automaker

is already experienced with the process and does not expect to realize any further process im-

provements (and thereby reductions in cost). For instance, in addition to the numbers listed in

Table 3.2, the stamping process-based cost model assumes a low reject rate, fast cycle time, min-

imal downtime for equipment maintenance or repair, and so forth. Consequently, model results

represent long-term unit manufacturing cost. Material prices, though, are set to reflect market

conditions during the first half of 2009. More information on these cost models can be found in

[47].
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Table 3.3: Raw material and scrap prices.
Price Scrap price

Material [$ / kg] [$ / kg]

Mild steel sheeta $0.87 $0.26
High strength steel sheet (210 MPa) $0.92 $0.26
High strength steel sheet (280 MPa) $0.97 $0.26
Aluminum ingotb $1.50 $1.01
Aluminum blanks – 5182 $3.48 $1.52
Aluminum blanks – 6111 $3.48 $1.52
Aluminum blanks – 5754 $3.35 $1.52
Aluminum sheet – 5083, BN lubricatedc $4.23 $1.99
Magnesium ingotd $2.92 $1.46
Magnesium sheet – AZ31e $5.00 $2.25
Magnesium sheet – AZ31, BN lubricatedc,e $5.82 $1.65
a Average of MEPS cold rolled coil price between January and April 2009 [2].
b Estimated from Platt’s Metals Week prices between January and June 2009,

for example, [7].
c Boron nitride lubricant cost is $0.55 per kilogram.
d Taken from Platt’s but divided by two for long-term contract estimate [7].
e Sheet fabrication prices estimated from [38].

Assembly Cost Model

The assembly model is another process-based cost model, but the process line it represents is

constructed differently from the forming process lines in that it scales by increasing line length

rather than by adding parallel lines. Assembly lines are composed of stations that are responsible

for performing the necessary process steps. The number of stations in each line—and therefore

the equipment and tooling required—depends on annual production volume, which also deter-

mines the line rate. At higher volumes, finished vehicles have to leave the line at a faster rate.

The rate, in turn, limits the amount of time a vehicle can spend at any given station. Conse-

quently, multiple stations may be required to complete a single joining process step in order to

keep the line moving at the required rate. In contrast, line rate and the number of stations are

fixed parameters in the “classic” process-based cost models; higher volumes are accommodated

by adding parallel lines rather than additional stations to the existing line.

The assembly model predicts the cost of joining any number of units given the joining process

for any two parts or subassemblies and the “quantity” of that process. Because of the structure of

the line, as discussed above, the assembly process does not have a fixed process flow. Rather, the

cost to assemble a multiple-component subassembly, such as a door, is evaluated for a number
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Figure 3-4: Short- and long-term unit costs, and learning curves, of each material option consid-
ered in the body-in-white case study.

of proposed serial lines generated by the model from the inputted joining processes and with

varying levels of automation. The model then attaches a cost to the final, most cost-effective

iteration. Varying production volume causes the model to adjust line rate and generate a revised

assessment of the line design and thus a new cost estimate [80].

Short-Term and Average Costs

The chart in the upper right of Figure 3-4 plots long-term unit manufacturing costs, estimated

by the process-based cost models, of each material option as functions of the annual production

volume of the midsize body. The production volume of 200,000 units per year is also denoted on

the plot. Once the long-term unit manufacturing costs of the material options are generated, they
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are used to construct the learning curves and to calculate the short-term unit manufacturing costs

(also shown in Figure 3-4), as well as the average unit costs over the automaker’s five-year time

frame. Rather than use a log-linear functional form, which exhibits a steep drop in parameter

value over the first few units manufactured by the firm, the learning curves in this case study

follow S-shaped paths, in which cost saturates at both low and high cumulative volumes, but

evolves in a log-linear fashion (i.e. each doubling of cumulative volume leads to the same percent

decrease in cost) at intermediate volumes. This curve is the same as the one employed by the

Volpe Model, which is used by NHTSA (National Highway Traffic Safety Administration) to set

fuel economy targets for CAFE (Corporate Average Fuel Economy) regulations [4, 68]. This case

study adopts a slightly modified form of the equation:

y(V) = yo

(√
1− σ

)max(0,log2(min(V,Vhi)/Vth))
(3.2)

where y is the unit manufacturing cost (or more generally, the emergent property), V the cu-

mulative volume, Vth the threshold volume at which y first starts changing, Vhi the maximum

volume at which y saturates, and σ the learning scope. For this curve, learning scope represents

the extent to which manufacturing cost has evolved by the time cumulative volume reaches Vhi

so a scope equal to 0 corresponds to no cost evolution and a scope approaching 1, to the property

y evolving to its maximum extent (that is, lim
σ→1

y(V > Vhi)→ 0). The learning rate, ρ, or how fast

cost decreases each time production volume doubles, is determined by σ according to

ρ = 1−
√

1− σ

provided Vhi = 4Vth. Higher values of σ reflect faster rates or higher values of ρ because cost

evolves further over the same number of units (as defined by Vth and Vhi). Values of the S-curve

parameters for each material are shown in Table 3.4; they are loosely based on the numbers

used by NHTSA for its 2011 CAFE target analysis [4] with Vhi = 4Vth for all material options. For

instance, the learning scopes of 30% to 50% are in line with NHTSA’s assumption that technology

cost decreases by 20% (= ρ) with each doubling of cumulative production volume. Such numbers

are realistic for the automotive industry—and may even be on the low side—as evidenced by data

collected by Kar [43] and Nadeau [56]. Figure 3-5 illustrates the relationship between short- and
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Table 3.4: Learning curve parameters for each body-in-white material.
Strategy ID Vth Vhi σ ρ

MS 150,000 600,000 0.0 0.0
HSS 150,000 600,000 0.0 0.0
AL 250,000 1,000,000 0.3 0.16
GF 300,000 1,200,000 0.3 0.16
CF 400,000 1,600,000 0.5 0.29
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Figure 3-5: Learning curve for aluminum body.

long-term unit cost using the learning curve for the aluminum body, which is produced using

Equation (3.2) and the material’s parameters from Table 3.4.

The final step in analyzing manufacturing cost for the selection method is to compute the

average unit cost of each material option. Assuming that the cost of each option follows its

respective learning curve exactly as it evolves, the average cost is the total cost to the automaker

over that five-year period, divided by the aforementioned factor (Equation (3.1)).

The total cost of all bodies produced given a material option is related to the total area under

the learning curve between zero and the cumulative volume after five years or one million units
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Table 3.5: High volume body-in-white manufacturing costs.
Unit Cost

Strategy ID Short-Term Long-Term Average Total Cost

MS $868 $868 $868 $750 M
HSS $1,140 $1,026 $1,067 $920 M
AL $2,081 $1,456 $1,805 $1,560 M
GF $1,890 $1,322 $1,689 $1,460 M
CF $4,389 $2,194 $3,856 $3,330 M

(200,000 units per year × 5 years). The area is calculated by integrating the learning curve:

Average unit cost = Average cost factor · Total cost

= Average cost factor ·
∫ 106

0
y(V)dV

where V is the cumulative production volume over the five-year time frame and y(V) is the

learning curve in Equation (3.2). It should be noted that the above equation assumes cost is

not discounted (which affects the factor in Equation (3.1). Adding a discount factor requires

piecewise integration with the integration range broken down into blocks of 200,000 units (the

annual production volume). Each of these integrals is then multiplied by its appropriate discount

factor, and these values summed to calculate discounted average unit cost. The resulting unit

cost associated with each material is shown in Table 3.5, along with long-term unit cost from the

process-based cost models and short-term unit cost.

3.2.2 Results and Sensitivity Analysis

The manufacturing costs calculated above are next used to rank the different materials for the

midsize car’s body-in-white. These rankings are shown in Table 3.6 and indicate that the different

approaches to evaluating manufacturing cost lead not only to the same preferred material—

mild steel—but also to the same ordering of the options. Even if mild steel is removed from

consideration in the selection process, high-strength steel is identified as the preferred alternative

material regardless of how unit manufacturing cost is calculated. It therefore appears that cost

evolution has no impact on the preferred materials. A comparison of the learning curves for the

material options (bottom plot in Figure 3-4) confirms this conclusion: the learning curves never
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Table 3.6: Ranking of material options according to high volume unit manufacturing cost.
Rank Short-Term Long-Term Average

1 MS MS MS
2 HSS HSS HSS
3 GF GF GF
4 AL AL AL
5 CF CF CF

cross. Consequently, there is no reason to expect that the ordering of the materials will change

between cost evaluation approaches, even if the decision’s time horizon is shortened or extended.

This conclusion, however, is specific to the conditions outlined above and does not imply that

the consideration of learning never impacts the materials selection decision. On the contrary,

manufacturing cost is context-dependent so changes to material parameters or to the problem’s

context can potentially lead to a different outcome. One possible context change is to lower

the vehicle’s annual production volume, which, in turn, affects the unit manufacturing cost of

each material because the firm will no longer be able to leverage economies of scale. Since the

material options have different fixed and variable costs, their unit costs will respond differently to

a change in annual production volume. Another possible change is to alter a material’s learning

curve parameters; such a change may be warranted, especially if there is some uncertainty in the

original values. The remainder of this section explores whether changes to the vehicle’s annual

production volume and material learning curve parameters impact the preferred material or the

rank of the material options.

In the first sensitivity analysis, annual production volume is reduced to 20,000 units per year,

down from 200,000 units per year. Twenty thousand units per year, in the automotive indus-

try, is considered to be low volume production because at this level, fixed costs dominate total

manufacturing cost and increasing the volume by the marginal vehicle has a significant affect

on the unit cost. In contrast, 200,000 units per year is considered to be high volume production

because variable costs dominate total manufacturing cost and producing an additional vehicle

has minimal impact on unit cost.

Lowering the volume, however, means that unit manufacturing costs have to be recalculated.

As before, the long-term cost is predicted using process-based cost models, with short-term

and average costs calculated as described above. The resulting (discounted) costs are shown in
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Table 3.7: Low volume body-in-white manufacturing cost.
Unit Cost

Strategy ID Short-Term Long-Term Average Total Cost

MS $2,297 $2,297 $2,297 $200 M
HSS $2,497 $2,247 $2,497 $220 M
AL $3,047 $2,133 $3,047 $260 M
GF $2,508 $1,755 $2,507 $216 M
CF $5,282 $2,641 $5,281 $455 M

Table 3.8: Ranking of material options according to low volume unit manufacturing cost.
Rank Short-Term Long-Term Average

1 MS GF MS
1 HSS AL HSS
2 GF HSS GF
3 AL MS AL
4 CF CF CF

Table 3.7. These costs are clearly higher than those in Table 3.5 because tooling and other fixed

costs are spread over fewer units.

Table 3.8 shows the materials ranked according their to low volume manufacturing costs.

Looking at the table, it is immediately apparent that the short- and long-term costs result in

different material orderings. This is partly due to the variation in learning parameters among the

different options, partly to the approach used to derive short-term cost from long-term cost. (The

ratio between short-term cost and long-term cost is fixed; therefore, at high volumes when car

bodies are cheaper, the difference between short-term and long-term cost is small; in contrast, at

low volumes when bodies are more expensive, the difference between the two costs is larger. For

the above case, this difference is sufficient for both aluminum and glass fiber to trade places with

high-strength steel and mild steel.) The ordering of the material options by average cost, however,

is no different from that of short-term unit cost because the production volume is so low that

the automaker does not reach Vth by the end of the five-year time frame and therefore does not

experience any cost evolution. In other words, the automaker does not produce enough vehicles

to gain sufficient experience to improve its manufacturing process and reduce its cost. This is

supported by the data in Figure 3-6, which plots the learning curves of the material options at

an annual production volume of 20,000 units per year. Although the curves eventually cross—

which leads to a different ordering when long-term unit costs are considered—the automaker,
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Figure 3-6: Learning curves of material options for an annual production volume of 20,000 units
per year.

by the end of the five-year time frame, is nowhere near that point and has only produced 100,000

total vehicles. In order to see a difference, the automaker would have to manufacture almost

400,000 vehicles; at an annual production volume of 20,000 per year, this would take nearly 20

years. Consequently, considering learning at low volumes does not provide any new information

because the ordering of material options for average cost remains the same as that for short-term

cost.

The second sensitivity analysis for this case study uses the initial high-volume scenario to

investigate whether changes to the parameters of a material’s learning curve can affect the or-

dering of the material options. Specifically, it considers a faster learning rate (i.e. lower values of

Vth and Vhi) for the aluminum body. This faster rate reduces the average unit cost of aluminum

but leaves the average costs of all other materials, as well as all short- and long-term unit costs,

untouched. Figure 3-7 plots the average unit cost of aluminum as a function of its threshold

volume (assuming Vhi = 4Vth), along with the average costs for the other materials. As can be

seen from the figure, the cost of aluminum is below that of glass fiber for threshold volumes

below 160,000 units—indicating that at faster learning rates, aluminum is preferred over glass

fiber for a midsize car’s body. In contrast, the short- and long-term results suggest that glass

fiber is preferred over aluminum regardless of the learning rate (see Table 3.6).

The change in order at faster learning rates is because the learning curve of aluminum is
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able to undercut that of glass fiber over a range of cumulative volumes, and thus, reduce that

material’s average cost by reducing the area under its learning curve (Figure 3-8). If the time

frame is long enough, however, the average cost of the glass fiber body will eventually “catch

up” to that of the aluminum body and the former will prove to be the cheaper solution because of

its lower long-term cost. Changing the threshold volume of aluminum, however, does not change

the fact that mild steel remains the least expensive option. Regardless, under certain conditions—

in this case, faster learning rates for aluminum—considering learning can make a difference in

material rank. A higher scope can also impact the materials’ rankings, but is more complex to

analyze because changes in scope affect both the short-term and the average costs; consequently,

material order according to average cost may be different from that of the long-term cost, but tell

the same story as short-term cost.

3.2.3 Summary

The above case study investigated whether the consideration of learning in the manufacturing

cost calculation could impact the material selection decision for the body-in-white of a midsize

car. To accomplish this, materials options were ranked using three approaches to estimating

manufacturing cost: 1) short-term unit cost, 2) long-term unit cost, and 3) average cost over the

five-year time frame. The resulting orderings were then compared to determine whether ranking

the materials according to average cost, the only cost calculation approach that considers cost

evolution through learning, would lead to a different preferred material or, at the very least, a

different ordering of the material options. Case study results showed that:

v At high volume (200,000 units per year). . .

F Mild steel, the baseline material, has the lowest cost regardless of how manufacturing

cost is calculated and is always the preferred option.

F Learning curves do not cross so the ordering of the material options does not change

regardless of cost calculation approach.

v At low volume (200,000 units per year). . .

F Mild steel has the lowest short-term unit manufacturing cost and the lowest average

cost; however, glass fiber composite has the lowest long-term unit cost.
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F Glass fiber composite has the lowest long-term unit cost; however, it would take the

automaker around 60 years (given input parameter values) to gain sufficient experi-

ence to reach long-term costs.

F Unit manufacturing costs are not as spread out as at high volume so learning curves

cross and the ordering of the material options changes between cost calculation ap-

proaches.

v Learning curves can also cross, depending on material learning rates and scopes.

F Increasing the learning rate of aluminum reduces the average cost of the aluminum

body so that at high rates, it is eventually preferred over the glass fiber composite

body.

F If the material’s learning scope is not large enough, however, a higher learning rate

will not make a difference.

Exactly which material is preferred, however, will ultimately depend on the automaker’s time

horizon and the long-term costs of the material options. In the end, the results are case-specific:

different materials or products can lead to different conditions under which considering learning

has an impact so each situation will have to be analyzed separately. However, the midsize car

case study at least proves it is possible for considering learning to lead to a different conclusion;

the automaker can thereby better inform its selection decision by accounting for learning in its

cost calculations.
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Chapter 4

Rethinking Learning in Materials

Selection

The preceding chapter investigated the impact of incorporating cost evolution due to learning

by doing into a traditional materials selection method. The modified selection method was

demonstrated with a case study of materials selection for the body-in-white of a midsize car.

Results from the case study illustrated that, under certain circumstances, the consideration of

cost evolution in the materials selection process could impact the ranking of the material options

when ordered according to manufacturing cost. Mild steel, however, was the preferred material

throughout the case study, even if less preferred materials, such as aluminum and glass fiber

composite were reordered between different scenarios. (The one exception to this observation

was when the materials were ranked according to their long-term costs at low production vol-

ume: in this case, glass fiber composite was preferred. This scenario, however, can be disregarded

as not viable because of the low annual production volume and consequently, the extremely long

time frame required for the automaker to gain enough experience and realize long-term manu-

facturing costs.) Therefore, one possible conclusion from the case study is that an automaker will

never introduce an alternative material for use on a vehicle unless it is forced to do so, whether

because of regulation requirements, consumer demand, or other constraining factors.

This statement, though, does not match reality: it is a known fact that automakers—and other

manufacturing firms—adopt new materials, even when those materials are not essential to the

product’s design and despite their higher costs. For example, automotive manufacturers such as

51



Audi and General Motors currently sell vehicles with aluminum body structures or carbon fiber

panels (e.g. [53, 61]); likewise, Airbus and Boeing have incorporated composites into their com-

mercial aircraft designs (e.g. [16, 31, 62]). The beverage and sporting goods industries have also,

in the past, adopted new materials for their products [17, 55]. Many of these firms, however, still

manufacture and sell products made from the “original” materials they used prior to the intro-

duction of the new material: as a case in point, the automotive and aircraft industries continue

to use steel and aluminum, respectively, for their products. These observations indicate that

manufacturing firms, including automakers, introduce alternative materials to their products,

even when they are not forced to use such materials—which directly contradicts the conclusion

drawn from the case study’s results that firms will not implement alternative materials unless

those materials are absolutely necessary.

One potential reason for the discrepancy in these conclusions is that firms behave irrationally

by adopting new materials when they do not have to. More likely, though, is that the proposed

materials selection framework is missing a key component and consequently, is limited in its

comprehension of why a firm might be motivated to switch to an alternative material, especially

when that material is more expensive than the original one. More to the point, the framework,

as presented in Chapter 3, will only identify an alternative material as the preferred option if

that material is cheaper than the baseline material currently in use. For the body-in-white case

study, this means that mild steel, the baseline material and the least expensive option, is always

preferred. However, it was established above that this conclusion contradicts observations of

firms’ actions; therefore, there must be other reasons why a firm might adopt an alternative

material that the selection framework, in its current state, cannot evaluate.

The use of a test bed is one potential reason why a firm might choose to adopt a new, more

expensive, material before that material is necessitated by design constraints. By employing one

of its products as a test bed, the firm can deliberately gain experience working with the new

material and reduce that material’s unit cost so that it is cheaper by the time the firm requires

it to satisfy constraints. Test beds are a well-known industry practice: examples of use include

military aircraft and Formula One cars [31, 32, 72].

Learning is essential, however, for a firm to even consider introducing an alternative material

to its product line via a test bed: the firm has to believe that, at the very least, cost reduction
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due to learning will happen and that it will realize economic benefits in exchange for the early

adoption of a new, costly material for one of its products. Without the conviction that cost will

evolve, the firm will have no logical reason to use a test bed because doing so would mean

implementing a more costly material without any foreseeable economic benefits. Regardless,

the decision to use a test bed can lead a firm to adopt an alternative material, even when that

material is not strictly necessary for its products.

4.1 Expanding Selection Framework Scope

4.1.1 Adding Multiple Periods

Any firm planning to use a test bed with the goal of gaining experience and thereby reducing

a material’s unit cost will first have to answer 1) whether future constraints will require the

use of a specific alternative material on that firm’s products and 2) whether that material is

suitable for use on a test bed—that is, whether using it on a test bed will enable the firm to

lower its overall manufacturing cost. The proposed materials selection framework is on the right

track in that it incorporates learning into the decision-making process; however, it is unable to

analyze whether a material is suitable for use on a test bed due to its restricted scope in which

it makes a single selection decision that is limited to the choice of a single material for a single

product. Consequently, it lacks the ability to make a selection now given some future constraint

that necessitates the use of a specific alternative material, and analyze any potential benefits,

which come in the form of reduced manufacturing cost, the firm may realize in the future.

The selection framework is therefore revised so that its scope encompasses a longer time

horizon, which is divided into two (or more) periods. In the second period, the firm is forced to

use a specific alternative material because that material’s properties enable the firm to satisfy a

design constraint that the baseline material cannot. In the first period, though, the firm confronts

the choice of whether to continue using the baseline (current) material until the alternative ma-

terial is required in the second period, or introduce an alternative material in that period. These

options are detailed by the two scenarios presented in Figure 4-1.

If material costs do not evolve, the choice for the first period is trivial: the material with the

lowest unit manufacturing cost is identified as the preferred option, regardless of which alterna-
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Figure 4-1: Two scenarios for a single-product selection problem with a two-period time horizon.

tive material is required in the second period. On the other hand, if unit manufacturing costs

evolve due to learning, the preferred material is not as obvious. While the firm can still choose

the material associated with the lowest total manufacturing cost (to account for cost evolution in

the calculations) over the first period, it may not lead to the lowest-cost decision once the second

period is taken into account. For instance, the firm may be able to further reduce total cost over

the entire time frame by selecting the same alternative material required in the second period for

use in the first period (Scenario 2); in this way, the firm can gain experience working with that

material and thus reduce its cost in the second period, at least relative to the amount it would

have paid had it used the alternative material in only the second period (Scenario 1). Whether

or not using the same alternative material in both periods will reduce overall cost relative to

choosing a different material in the first period will ultimately depend on the additional amount

the firm pays in the first period relative to the savings it realizes in the second period.

Figure 4-2 presents a simple two-period, two-material illustration that compares the undis-

counted costs of two possible scenarios. On the left, the firm is assumed to use its baseline

material in the first period and an alternative material in the second (Scenario 1); on the right,

the alternative material is used in both periods (Scenario 2). Consequently, in the right-hand

scenario, the experience the firm gains in the first period enables it to lower the material’s unit

cost in the second period. Only the alternative material’s unit manufacturing cost evolves; the

baseline’s does not because the firm is already familiar working with it. The alternative mate-

rial’s cost is also assumed to be higher than that of the baseline material—at least when the firm
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Figure 4-2: Scenario cost comparison for single-product, two-period selection problem.

first implements it. Additionally, the firm is assumed to produce the same number of products

in each period.

The preferred scenario will depend on which is cheaper according to the total manufacturing

cost of each. Total cost, in turn, is a function of the baseline material’s unit manufacturing cost,

as well as that of the alternative material and how fast the latter evolves with each additional

unit produced. As with the learning curves in Chapter 3, total cost over the entire time horizon

is represented by the area under the curves; therefore, the costs of the two scenarios can be

compared by comparing the areas under their unit manufacturing cost curves (as shown in

Figure 4-2).

If the discount rate is 0%, the firm will pay a cost premium, denoted by the light red region

in Figure 4-2, to use the alternative material in the first period, before that material is absolutely

necessary. Since this early adoption of the alternative material also leads to reduced unit cost in

the second period, the firm will realize savings in that period, denoted by the light green region.

The preference for either scenario will then depend on the relative area of these two shaded

regions: if the green region has the larger area, Scenario 2 will be preferred because savings will

exceed the cost premium associated with early adoption. On the other hand, if the red region

has the larger area, Scenario 1 will be preferred and the firm will choose the baseline material

for the first period.
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Another way of looking at this is to compare the area under the baseline material’s curve in

the first period of Scenario 1 with the area under the alternative material’s curve in the second

period of Scenario 2. The other two periods that use the alternative material can be ignored

because their areas cancel out—assuming a 0% discount rate. If the area under the baseline

material’s curve is less than the area under the alternative material’s curve (as is the case in

Figure 4-2), the firm will prefer to use the baseline material in the first period; otherwise, the

firm will prefer the alternative material.

Increasing the discount rate to a non-zero value will shift the firm’s preference toward the

use of the baseline material in the first period. A higher discount rate will devalue the second

period’s cash flow more than that of the first period and thus, shrink the area of the green region

relative to the area of the red region. The firm will, therefore, have to realize even more savings

with the alternative material—either through a faster learning rate, larger scope, or a combination

of both—in order for Scenario 2 to be preferred over Scenario 1.

Ultimately, which scenario the firm prefers will depend on a number of parameters, includ-

ing the length of the time horizon, production volume in each period, cost of both materials, the

functional form and parameters of the alternative material’s learning curve, and so forth. Re-

gardless, the results of this brief exercise indicate that including a second period, which requires

the use of an alternative material, in the selection problem’s scope can potentially lead the firm

to adopt that alternative material in the first period, before that material is required by design

constraints. Adopting the alternative material in the first period, however, is only preferred if

doing so enables the firm to lower its total manufacturing cost over its time horizon. This, in

turn, requires that the cost savings in the second period exceed the cost premium in the first

period. A non-zero discount rate will only favor the use of the baseline material over the (more

expensive) alternative material in the first period.

The exercise in Figure 4-2 illustrates that although it is possible for the early adoption of an

alternative material to take place, the preference for the alternative material in the first period

requires that the average unit manufacturing of that material in the second period of Scenario 2

be lower than the unit cost of the baseline material in the first period of Scenario 1. While satis-

fying this condition might be feasible for some industries and material options, it, unfortunately,

is not a realistic requirement for the material options in the automotive industry, especially if au-
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tomakers produce vehicles at high annual production volumes in order to leverage economies of

scale. At high volumes, the long-term unit costs of all alternative materials are above that of the

mild steel baseline (see Figure 3-4). These alternative materials, consequently, will never be less

expensive than the baseline and Scenario 1 in Figure 4-2 will always be favored. Therefore, the

selection framework, even with a scope that has been expanded to include multiple periods, still

cannot account for why an automaker or other manufacturing firm might adopt a new material

that it is not required for use in the short-term.

4.1.2 Including Multiple Products

The conclusion of the preceding section indicates that something is still missing from the analysis

since clearly, expanding problem scope time-wise is not sufficient for selection results to accu-

rately portray a firm’s actions. Even when two periods are considered in the selection process,

a firm will still avoid adopting a new material—even for a test bed—unless that material will

eventually be cheaper than the baseline option. The selection problem’s scope is therefore ex-

panded again, this time to include the multiple products, or applications within a single product,

manufactured by a single firm.

Broadening the selection framework’s scope to include multiple products is a more accurate

representation of a firm’s operations because the selection process will no longer assume any one

product is designed and manufactured independently of a firm’s other products. Most firms,

anyway, have manufacturing portfolios that consist of several product lines, each line targeted at

a different market segment or serving a distinct purpose. Thus, the selection scope is expanded

from selecting materials for a single product over some time horizon, to selecting materials for

multiple products over the same time horizon (Figure 4-3). As proposed in the preceding section,

the time horizon is divided into periods so that one material is chosen for each product in any

given period, with the potential for the preferred material for any one product to change between

periods as material properties or problem context evolves. Preferred materials, though, are still

identified according to manufacturing cost, only this time, the total cost of all products over the

time horizon is included in the metric calculation.

In addition to providing a more accurate portrayal of a firm’s operations, a multi-product

scope is anticipated to be necessary for the materials selection framework to be able to compre-
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Figure 4-3: Contrast of single-product and multi-product selection method scope.

hend a firm’s decision to use a test bed. In the beginning of this chapter, it was noted that the

purpose of a test bed is so a firm can deliberately gain experience working with a new material

and reduce that material’s cost in preparation for future use. The experience the firm gains,

however, should be applicable not only on the product that first implemented the new material,

but also on the other products that eventually adopt the new material after the firm is more

comfortable working with it. If these products benefit from the firm’s experience with the initial

product, they should be included in the selection framework in order to account for that benefit.

By expanding the framework’s scope to include these products, the firm can then fully assess

the benefits derived from expanding the new material’s use to other products, as well as which

products should adopt the new material in the first place.

4.1.3 Additional Considerations

There are consequences, however, for expanding the scope of the materials selection problem.

Unlike the single product analysis, which relies on manufacturing cost to rank material options,

minimizing the total manufacturing cost of several products is not necessarily equivalent to

maximizing total profit. Not only is each product likely to have a different production volume

and profit margin, the firm can vary both these values (within reason), which in turn affects the

returns on each product. Consequently, using total profit rather than total cost as the decision
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metric may make more sense for a multi-product problem. Doing so, however, is not without

challenges: calculating profit requires knowledge of profit margins of the products, as well as

price elasticity of demand to determine the extent demand—and therefore profit—will be affected

upon changes to production volume or price. Consequently, the materials selection analyses in

this study are based on cost minimization, although selection according to profit maximization

is briefly addressed in Appendix A.

Secondly, learning is assumed to be shared among products, rather than to take place inde-

pendently on each product in a firm’s portfolio. Shared learning occurs when experience a firm

gains while working with one product can be transferred to other similar products that share a

common resource (e.g. a manufacturing process line for a specific material) as the first product

[13, 22]. In such cases, all these products can contribute to the firm’s cumulative experience—as

measured by the cumulative number of units of product manufactured—with that resource and

facilitate the firm’s progress down the learning curve. The firm can therefore reduce not only

the cost of the product it used to gain its initial experience, but also the costs of other products

that share the common resource. For example, in the case of automotive manufacturing, shared

learning can arise when products that are designed using the same material and share the same

production line; as the automaker learns and improves line efficiency, all products benefit.

Learning has been observed in the automotive industry, in both manufacturing [43] and gen-

eral assembly [56]. Shared learning has also been documented, specifically for the transfer of

knowledge between shifts and over time [27]. More broadly, other studies have examined learn-

ing transfer: for example, between plants owned by a single firm [10], as well as between different

firms [41].

Shared learning is also anticipated to be necessary for a firm to decide to use a test bed for

the introduction of a new material. The exercise in Section 4.1.1 illustrated that if the product

that implements the new material is the only one that benefits as the firm gains experience, the

new material will be implemented early (i.e. in the first period) only if its average unit cost in the

second period of Scenario 2 is lower than the unit cost of the baseline material. If the alternative

material’s unit cost, even in the long-term, is not expected to drop below that of the baseline

material (as is the case for most of the alternative materials used in the automotive industry),

the alternative material will never be adopted unless the firm is forced to do so. On the other
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hand, the ability to transfer knowledge between the test bed product and other products that

share a production line will enable the firm to realize additional economic benefits that, in turn,

will facilitate its ability to offset the cost premium of a test bed. Given this information, it is

now conceivable that a firm will deliberately introduce a new, more expensive material in order

to gain experience working with that material, even if the material is not necessitated by design

constraints.

4.2 Next Steps

Although the single-product selection framework proposed in Chapter 3 accounts for cost evo-

lution, it was shown to be incomplete because it is unable to account for any sharing of learning

among products due to its limited scope. This was demonstrated as problematic because its con-

clusions did not match firm behavior: the case study’s results suggested that firms will not use

alternative materials unless the materials are cheaper than the baseline, or unless the firms are

forced to do so. In contrast, the actions of manufacturing firms indicate that the firms introduce

alternative materials even when such materials are not required to satisfy design constraints.

Therefore, the scope of the selection framework was expanded to account for multiple periods

and products in the selection process (Figure 4-3), as well as shared learning among products

that use similar materials and manufacturing processes so that when a firm gains experience

with one product, other products benefit as well.

Despite its challenges, expanding the scope of a selection problem enables a more accurate

representation of a manufacturing firm’s product design process and is likely to better inform

the selection decision than a selection method that is limited to a single product. A method with

a broader scope not only enables the evaluation of shared learning, but also provides the ability

to identify and systematically analyze strategies a firm can adopt for introducing new materials

to its products. How a firm should introduce new materials to its products cannot be decoupled

from materials selection because factors like learning not only favor certain materials over others,

but also favor strategies the firm can use to cost effectively introduce the new materials—such

as early adoption as in the case of a test bed. In contrast, traditional selection methods do not

address the introduction of the preferred materials to the firm’s products, but instead simply

assume that once the materials are identified, they are applied whenever the firm gets around to
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doing so. The traditional selection framework will therefore have to be substantially modified in

order for it to accommodate the expanded scope and comprehend the associated consequences

of the broader problem.

The following chapters present and demonstrate a multi-product, multi-period materials se-

lection framework. This framework is designed to identify appropriate materials that enable the

firm to satisfy its design constraints at minimum total manufacturing cost. Shared learning is

incorporated into the manufacturing cost calculation, which accounts for the cost of each mate-

rial selected for each product in each period included the selection problem’s scope. The firm

is permitted to switch materials between periods because both material properties and problem

context can evolve throughout the time horizon and potentially alter the preferred materials.

This proposed selection framework is used to investigate whether the consideration of learning—

specifically, shared learning—can impact the preferred materials for a firm’s many products. On

a more practical level, it is employed to identify appropriate materials for the firm, as well as

strategies the firm can adopt for introducing those materials to its product lines and the con-

texts under which such strategies are financially beneficial to the firm. The use of a test bed is

one example of an introduction strategy and the primary focus of this study. By deliberately

choosing to introduce a new material on a test bed, a firm can gain experience with that material

before it is required to satisfy constraints or before adopting it for other products. Test beds were

discussed earlier in this chapter, but in the context of the need to expand selection problem scope

to encompass multiple products and periods.

Now that the need for a broader scope has been established, the next logical question is which

materials should the firm choose for introduction on a test bed and which products should be

used as that test bed. The selection framework can be employed to perform this analysis and

identify both the preferred material and the product, as well as the conditions under with the

firm will financially benefit from using a test bed. Ideally, the product selected as a test bed will

be one whose consumers are willing to pay for the added benefits of the new material, or will

have a low price elasticity of demand so the firm can recoup the test bed’s cost without losing

sales. If it turns out the firm does not need to adopt new materials, the question of whether

to use a test bed may be irrelevant. Either way, a firm will introduce a new material on a test

bed only if it expects to realize sufficient economic benefits in exchange for the early adoption
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of that material. Since the benefits can be realized on both the original product used as a test

bed and on other products that eventually adopt the “not-so-new” material, the consideration of

multiple products, as well as shared learning, in the selection framework are thereby essential to

systematically analyze the use of a test bed (and other strategies for introducing materials) and

when that strategy will be worthwhile to a firm.

This chapter and the ones following it analyze a firm’s decision to deliberately gain experi-

ence by introducing a new material on a test bed, as well as the more general question of whether

the consideration of shared learning impacts a firm’s preferred materials in a multi-product se-

lection problem. A stylized test bed exercise is used to motivate first, the incorporation of shared

learning into the materials selection process, and second, learning’s role in a firm’s decision to

deliberately gain experience with a new material by introducing that material on a test bed. The

stylized exercise shows that, under certain (controlled) circumstances, a firm can benefit finan-

cially from deliberate learning with a test bed. Chapter 5 builds upon this simpler analysis and

presents a multi-product selection framework for the purposes of informing the materials se-

lection decision for two or more of a firm’s products, and targeting the more general question

regarding the consideration of shared learning in the selection process. The proposed framework

is designed to account for evolution in each product’s manufacturing cost through shared learn-

ing and is demonstrated with two case studies, the first of which revisits the stylized exercise

and the second, evaluates the materials selection decision of an automaker seeking to improve

the fuel economy of its fleet through use of alternative lightweight materials. The second case

study is also used to systematically investigate potential strategies, in addition to the use of a test

bed, a firm could adopt when introducing new materials.

4.3 Stylized Test Bed Exercise

The use of a test bed is one of the many strategies available to a firm for introducing new

materials to its products. Firms can use test beds to deliberately learn how to better work with

the new material so that they can later apply that knowledge to other products that share a

common resource, and hopefully realize benefits in both the initial and the additional products

[22]. This section develops a stylized exercise to take a closer look at that strategy; in particular,

to assess whether there is merit in investigating it before building a more formal model. More
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Table 4.1: Scenarios for stylized test bed exercise.
Scenario 1 Scenario 2

Year Product A Product B Product A Product B

1 BL BL ALT BL
2 BL BL ALT BL
3 BL BL ALT BL
4 ALT ALT ALT BL
5 ALT ALT ALT BL
6 ALT ALT ALT BL

specifically, it evaluates the financial consequences to the firm of using a test bed and identifies

the conditions under which doing so will lead to a reduction in the firm’s manufacturing cost.

To accomplish this, this exercise evaluates and compares two scenarios, each involving the

selection of two materials—a baseline material and an alternative—for two products over a six-

year time frame. Both scenarios assume that the alternative material is required—whether due to

government regulations, consumer demand, or simply because the baseline material is no longer

available—on both products in the final three years of the time frame because it enables necessary

product capabilities the baseline material does not. The initial three years, however, differ in that

the second scenario uses one of the products as a test bed for the alternative material, whereas

the first scenario assumes both products are manufactured from the baseline material. These

scenarios are detailed in Table 4.1.

The total manufacturing cost of both products is chosen as the metric for comparing the sce-

narios and for assessing the financial consequences of introducing the alternative material on a

test bed (Scenario 2) versus waiting until it is absolutely necessary in both products (Scenario 1).

Total costs are calculated under three different circumstances for the cost of the alternative ma-

terial: short-term cost, long-term cost, and evolving cost. In the first two, costs are invariant over

time so the firm pays either the short- or long-term unit cost for each product it manufactures

with the alternative material. In the third, the firm applies whatever experience it gains to im-

proving its process line and, over time, reduces the unit manufacturing costs of both products.

Although firm profitability would be a better choice than manufacturing cost, calculating profit

requires additional information such as price elasticity of demand for each product. Profit and

its affect on a firm’s decision to use a test bed is thus limited to a qualitative discussion for this

stylized exercise, with Appendix A containing more detail on the incorporation of profit into the
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Table 4.2: Inputs for the stylized test bed exercise.
Parameter Variable Value

Annual Production Volume
Product A VA 20,000 units / year
Product B VB 300,000 units / year

Baseline Material
Fixed Cost $10,000,000 / year

Variable Cost $300 / unit

Alternative Material
Fixed Cost $6,000,000 / year

Variable Cost $375 / unit
Learning Scope σ 20%

Threshold Volume Vth 300,000 units
High Volume Vhi 1,200,000 units

Other Inputs
Discount Rate r 8%

Time Frame 6 years

Table 4.3: Unit costs of products.
Variable Product A Product B

Baseline Material CBL $800 $333
Alternative Material CALT

Short-Term Ci $844 $494
Long-Term C f $675 $395

selection framework. Finally, a sensitivity analysis is used to investigate the conditions under

which the second scenario reduces the total manufacturing cost for the firm.

4.3.1 Inputs

The preference for either scenario is based on the total manufacturing cost of each, which, in

turn, depends on the annual production volume of the products and the unit cost of using either

material. Table 4.2 provides a summary of the inputs. In the analysis, the annual production

volume of Product A (VA) is 20,000 units per year, while the volume of Product B (VB) is 300,000

units per year. Consumers are assumed to purchase all these units and are indifferent to the

firm’s choice of material.

To simplify the math, both products are assumed to have the same fixed and variable material

costs, but because of their different annual production volumes, different unit costs. If the fixed
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Figure 4-4: Unit manufacturing cost of the alternative and baseline materials as a function of
annual production volume.

costs listed in Table 4.2 are paid every year, the unit cost for a product with annual production

volume APV is

Unit Cost =
Fixed Cost

APV
+ Variable Cost.

The unit costs for both materials are plotted as functions of annual production volume in Fig-

ure 4-4 and summarized in Table 4.3 for the volumes given in Table 4.2.

As with the process-based cost model results from the body-in-white case study (see Sec-

tion 3.2.1), the alternative material’s unit cost as calculated directly from the fixed and variable

costs in Table 4.2 is assumed to represent the long-term cost (C f ) of using the material. A short-

term unit cost (Ci) and a corresponding learning curve for the alternative material are constructed

from the long-term cost plus the parameters in Table 4.2. No learning curve is required for the

baseline material because its cost does not evolve. The short-term cost is related to the long-term

cost through learning scope, σ = 1−C f /Ci. Higher values of σ imply greater learning and there-

fore a larger difference between short- and long-term costs. Between these two extremes, the unit

cost of the alternative material follows a learning curve similar to the one in Figure 3-5, but with

a linear rather than log-linear decay to simplify the math. Cost evolution starts at Vth = 300, 000

units and ceases at Vhi = 1, 200, 000 units—the same values as those used by NHTSA in its 2011
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Figure 4-5: Contrast of learning curves for both products in stylized exercise.

CAFE target analysis [4]. The slope of the curve is then calculated from Vth, Vhi, and σ. The

learning curve equation for the alternative material in either product has the form

CALT(V) =


Ci V < Vth

−σ
Vhi−Vth

V +
(

Ci −Vth
−σ

Vhi−Vth

)
Vth < V < Vhi

Ci (1− σ) Vhi < V

(4.1)

where V is the cumulative production volume of the alternative material over both products. As

before, the total undiscounted cost of manufacturing any number of products using the alterna-

tive material is equal to the area under that material’s learning curve (see Figure 3-1). Figure 4-5

contrasts the learning curves for both products given their respective production volumes.

The inputs from Tables 4.2 and 4.3 are used to calculate the total manufacturing cost of

each scenario, which consists of the discounted cost of each product in each year. In these

calculations, learning is assumed to be perfectly shared between products so that a unit of either

product counts equally toward the cumulative production volume of the alternative material.

Assuming the unit cost of the alternative material follows the learning curve exactly (i.e. the

firm continually improves its process to stay on the curve), the undiscounted cost of using that

material on either product over any given year is therefore the area under the learning curve
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Table 4.4: Total manufacturing costs of each scenario in the stylized exercise.
Cost Evaluation Approach Scenario 1 Scenario 2

Short-Term $687 M $690 M
Long-Term $615 M $608 M
Evolving $670 M $669 M

between the cumulative volume at the beginning of the year and that volume plus the product’s

annual production volume.

When both products use the alternative material in the same year, the products are assumed

to be manufactured in sequence with the entire annual volume of Product A manufactured first,

and the volume of Product B following. Consequently, by the time it manufactures Product B

in a given year, the firm has additional experience obtained from manufacturing Product A in

that year and is further down the learning curve. Product B therefore “sees” a higher cumula-

tive volume that includes the production volume of Product A. The costs of both scenarios are

calculated and the results compared to assess whether introducing the alternative material on

a test bed enables a firm to reduce its total manufacturing cost. The following section presents

the manufacturing costs of the two scenarios as computed using the above inputs, as well as a

sensitivity analysis to identify the conditions under which deliberate learning financially benefits

the firm.

4.3.2 Results and Sensitivity Analysis

The total manufacturing costs for both scenarios are shown in Table 4.4. These results indicate

that the second scenario is favored by both the long-term and evolving manufacturing cost cal-

culations. For the long-term cost calculation, this preference is driven by the lower cost of the

alternative material relative to the baseline material on Product A ($675 versus $800) rather than

by the firm’s desire to use a test bed. To reach this cost point for the alternative material, however,

the firm would have to somehow gain experience and learn. The short-term cost calculation pro-

vides a better point of reference because it represents the cost to the firm should the firm have

chosen to not learn or improve the alternative material’s manufacturing process. Under these

conditions, there is no point to using a test bed because there is nothing to be gained. On the

other hand, if the firm did choose to learn and to improve its manufacturing process, then the
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Figure 4-6: Scenario cost comparison depicted with learning curves.

use of a test bed would be preferable—as the results for the evolving cost calculation indicate.

Since the cost of the second scenario is less than that of the first by approximately one million

dollars, it can be concluded that under the above conditions, introducing the alternative material

on Product A over the first three years is financially beneficial to the firm.

Before moving on to a sensitivity analysis, it is worth investigating the above situation in

order to better understand why spending money upfront for a test bed leads to future savings

once the alternative material is required on both products. When the alternative material’s short-

term cost is greater than the baseline material’s cost, the firm will have to pay a cost premium

to use a test bed. This cost premium is shown by the light red region in the graph at the top-

right of Figure 4-6. Adding a test bed to the picture means that any products manufactured

afterwards with the alternative material will be shifted to the right along the learning curve’s

x-axis, as illustrated in the bottom half of the figure. This shift reduces the area of the gray

region on the left to that of the lavender region on the right, in effect by reducing the number
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of products manufactured at the short-term unit cost and increasing the number manufactured

at the long-term unit cost. The difference between these two areas (green) represents the savings

the firm realizes from using a test bed. If these savings are greater than the cost premium of

the test bed—that is, if the green region has a larger area than the light red region—the firm can

benefit financially from introducing the alternative material on a test bed.

Since total manufacturing cost is an emergent property and therefore context-dependent, a

sensitivity analysis is used to better understand when changes to the context and to the inputs

affect the firm’s decision to use a test bed (or not). As illustrated in Figure 4-6, this decision

will ultimately depend on how the upfront costs compare to the future savings in the firm’s

total manufacturing cost. The remainder of this section uses the stylized exercise framework

to explore whether variations in 1) the annual production volumes of both products and 2) the

timing of the constraint that necessitates the use of the alternative material in the fourth year

impact the costs and savings associated with a test bed—and thereby the firm’s decision to use

one. All calculations are performed assuming costs evolve.

In the analysis, Product A is used as the test bed in the second scenario because, compared

to Product B, it has lower upfront costs due to its lower annual production volume and lower

unit cost premium. The latter is a direct result from the product’s annual production volume and

arises from the difference between the fixed and variable costs of the two materials. Therefore,

changing the product’s volume will impact the added cost of using it as a test bed; it will also

influence the future savings the firm realizes by affecting the amount of experience the firm gains

working with the alternative material.

Figure 4-7 plots both added test bed cost, from the first three years of the time frame, and

future savings from the last three years as a function of the annual production volume of Prod-

uct A. Net savings, the difference between the costs and savings associated with a test bed, is

also plotted; this quantity is equivalent to the cost difference between the two scenarios so that

negative values correspond to a preference for Scenario 1, while positive values to Scenario 2—

the test bed scenario. Both costs and savings decrease with decreasing production volume of

Product A; savings, though decreases at a slower rate than cost so net savings increase. Lower

volumes of Product A are associated with lower cost premiums because the unit costs of the base-

line and alternative materials are nearly equal (see Figure 4-4) and the manufacturer produces
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Figure 4-7: Added cost, savings, and net savings as functions of the annual production volume
of Product A.

fewer products with the alternative material. These volumes, however, are also associated with

lower savings because the manufacturer does not gain as much experience.

At very low volumes (below 15,000 units per year), the added cost of using a test bed drops

below zero because the alternative material is cheaper than the baseline material, even before

any cost evolution occurs; consequently, the firm should favor it whether or not it has plans

to use a test bed. Increasing the test bed product’s annual production volume, on the other

hand, increases the short-term unit cost of the alternative material relative to that of the baseline

material (short-term unit cost is 120% of long-term unit cost) and therefore cost premium. The

savings increase as well, but at a slower rate. Eventually—just above a volume of 23,000 units

per year—costs exceed savings so net savings drop below zero and Scenario 1 will be preferred

over Scenario 2.

Future savings also depend on the annual production volume of Product B, which accounts

for the majority of the alternative material’s total volume over the six-year time frame. These

savings are shown in Figure 4-8, along with the added cost of a test bed and net savings. At low

volumes of Product B, there are no savings because, although learning takes place, the firm does

not gain enough experience—or manufacture enough units—to pass the threshold volume (Vth)

and see any cost evolution. (In other words, the gray and lavender regions in Figure 4-6 both
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Figure 4-8: Added cost, savings, and net savings as functions of the annual production volume
of Product B.

end before the first “knee” in the learning curve.) Consequently, the firm will prefer Scenario 1

over Scenario 2 because implementing a test bed will increase its manufacturing cost without

providing any benefits. As the annual production volume of Product B increases, so too do

savings because the firm is able to move further down the learning curve, which increases the

extent to which unit cost evolves. Eventually, around a volume of 230,000 units per year, the

savings are high enough to offset the added cost of a test bed and lead the firm to prefer the

second scenario over the first. At high volumes of Product B, the savings plateau again because

of the saturation of the learning curve above Vhi. The use of a test bed continues to be preferred,

but the firm no longer realizes any additional benefit from increasing the volume of Product B.

Ultimately, a firm’s preference for a test bed will depend not only on the production volume

of the product used for the test bed, but also on the volumes of other products that adopt the

alternative material. If the combined volume of these products is too low, there is no motivation

for a firm to deliberately learn on a test bed because it will not be able to gain enough experience

to offset the added cost of doing so. Likewise, at high volumes, using a test bed will be favorable,

but the firm will not necessarily realize any additional benefits from increasing the number of

Product B it produces (market considerations aside).

Exactly whether a production volume is “low” or “high” will depend on the learning curve
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Figure 4-9: Added cost, savings, and net savings as functions of constraint timing.

and the values of its parameters. For instance, if instead Vth equaled 1 million units for the

alternative material, an annual production volume of 300,000 units per year for Product B would

be considered too low for a test bed to be favorable. Consequently, learning curve parameters can

also influence a firm’s decision to use a test bed. A firm will be reluctant to invest in a test bed if

it believes learning will take place very slowly or if the annual production volume of Product B

is low compared to Vth and Vhi. Under these conditions, the savings may be insufficient to offset

the added cost, or the firm may not see any savings at all. Similarly, the firm will not use a test

bed if it recognizes that the learning scope (σ) is very small so, again, savings would never be

able to compensate for the added cost of using a test bed (e.g. if CB
i,ALT − CB

f ,ALT < CA
i,ALT − CA

BL).

The second part of this sensitivity analysis explores the consequences of altering the year in

which both products start use of the alternative material on the firm’s decision to use a test bed.

Both scenarios are adjusted accordingly to reflect this change in the constraint. The analysis is

then simplified by assuming the firm always implements the test bed starting in the first year,

regardless of when the constraint requiring the alternative material comes into play. Varying

the year the constraint takes effect impacts the cumulative volume of the alternative material, as

well as that of the test bed, and therefore the amount of experience the firm can gain before the

constraint tightens.
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The added cost of the test bed, future savings, and net savings (i.e. the cost difference between

the two scenarios) are plotted as functions of constraint timing in Figure 4-9. If the constraint

becomes a factor early on in the time frame, a firm has minimal time to learn with a test bed.

However, the exercise indicates that the use of a test bed is still preferable because the total

volume of Product B that is manufactured with the alternative material is high enough that

the firm is able to move completely down the learning curve and offset the test bed’s added

cost. As the constraint is pushed further into the future, the number of years the test bed is

used increases, as does its added cost. The savings, though, also continue to increase, despite

the decreasing number of Product B that is manufactured with the alternative material, because

the higher cumulative volume of the test bed shifts Product B further to the right along the

x-axis of the learning curve (i.e. the green rectangle in Figure 4-6 becomes wider). This shift

decreases the number of units of Product B manufactured at short-term cost and increases the

number manufactured at long-term cost. Eventually, however, the total volume of Product B

manufactured with the alternative material becomes too low for the firm to learn enough and

compensate for the added cost. Under these conditions, introducing the alternative material on

a test bed is no longer desirable and the firm will prefer to follow the first scenario.

The above conclusions are, of course, subject to the learning curve’s parameters. Preference

for introducing the alternative material on a test bed will ultimately depend on how much expe-

rience a firm can gain—as measured via cumulative production volume—and how fast its unit

cost is expected to evolve with that experience. When the cumulative volume, by the end of the

time frame, is too low for the firm to see any cost evolution, the firm will prefer to not use a test

bed—which is exactly what happens when the constraint was pushed back to Year 5 or 6. If,

instead, cost evolution were to happen extremely fast over relatively few units, the firm may still

opt to use a test bed even if the constraint is far in the future.

4.3.3 Discussion

The stylized exercise above shows that, under certain conditions, introducing a new material on

a test bed can lower a firm’s total manufacturing cost over a given time frame. The test bed

works by allowing the firm to deliberately gain experience with an unfamiliar material, and later,

apply that knowledge to a larger number of products—hopefully at reduced cost. Only when
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the future savings are greater than the cost premium of using a test bed will the firm prefer to

introduce a new material in this manner.

In this exercise, Product A was chosen as the test bed because of its low unit cost premium

and low annual production volume, both of which enable the firm to minimize the added cost

of using a test bed. Increasing Product A’s annual production volume, as the sensitivity analysis

shows, simply increases the test bed’s cost premium, not only because the alternative material is

more expensive than the baseline material at higher volumes, but also because the firm would

have to use the alternative material on more units.

There are other strategies, however, not presented by the stylized exercise, that a firm can

adopt to reduce the cost premium of using a test bed when low-volume production is not an

option. For instance, the firm can choose a product with inelastic demand for its test bed. Since,

by definition, the demand for these products is not responsive to changes in price, the firm can

offset the cost of the test bed by raising product price with minimal losses in sales, but still realize

benefits from cost evolution. Luxury cars such as the Corvette often serve this purpose for an

automaker seeking to introduce a new materials or features to its fleet [72].

Even when product demand is elastic, a firm can still offset some or all of the added cost

of the alternative material, particularly when the material improves one or more of a product’s

attributes, and the firm can find consumers who place a high value on those improvements and

are willing to pay for them. The firm can then select as its test bed the product targeted at

those consumers and recover its costs by increasing that product’s price to capture consumer

value. If the firm is smart about changing the price, it can ensure that the product’s sales figures

remain unaffected, with the higher price canceling any affect the improved attributes may have

on product demand. This is the case for military aircraft, which serve as a test bed for composite

materials because the consumer—the U.S. Air Force—is willing to pay a premium for the weight

reduction the alternative technology enables [31]. While other market segments such as civilian

airlines may also be willing to pay for weight reduction, they may not value it as highly so their

respective aircraft are not appropriate test beds—at least from a financial standpoint. The concept

of “volume-neutral price” and consumer willingness to pay is also used in Appendix A to predict

incremental revenue in its presentation of profit-based materials selection.

Minimizing the cost premium of a test bed is not the only factor that decides whether a firm
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Table 4.5: Impact of stylized exercise parameters on a firm’s preference for either scenario in
Table 4.1.

Volume of Product A

Low High

Volume of
Product B
(relative to Vth)

Low

Scenario 1 preferred unless
alternative material is cheaper than
baseline material on Product A.

Scenario 1 preferred because firm
does not gain enough experience.

High

Scenario 2 preferred since savings
in later years offset cost of using
alternative material on Product A.

Scenario 1 preferred since savings
are unable to compensate for high
cost of test bed.

Learning Scope

Low High

Scenario 1 preferred since unit cost
does not evolve enough to offset
added cost of test bed.

Scenario 2 preferred since unit cost
evolves enough to compensate for
added cost of test bed.

Scenario 1: Uses alternative material only when necessary
Scenario 2: Introduces alternative material on a test bed

will take this route: also important are the savings the firm can realize by gaining experience

with a test bed and applying that experience to other products. The exercise results show that if

the firm cannot gain enough experience, either from the test bed or from simply using the alter-

native material on its products, to see any evolution in the material’s unit cost, it will not spend

additional money on developing a test bed because there is no benefit associated with doing so.

This leads to a firm’s preference for the first scenario at low volumes of Product B. Likewise, if

the firm does learn, but the cost evolves too slowly or is not anticipated to change enough to

offset the test bed’s cost, the firm will also prefer the first scenario. Table 4.5 summarizes these

observations from the stylized exercise.

Ultimately, a firm’s decision whether or not to use a test bed will depend on a number of

factors, including input variables, operational and market conditions, government regulations,

and so forth. The above exercise suggests what the firm should do in one particular case, and the

sensitivity analyses indicate how the firm’s decision might change if conditions were different.

Either way, the stylized exercise serves its purpose by illustrating that the consideration of shared

learning in the assessment of a firm’s total manufacturing cost can lead the firm to use a test bed

for introducing a new material to its products.
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4.4 Materials Selection and the Stylized Exercise

While the stylized exercise shows that shared learning between products can lead to the use of a

test bed, it does not explicitly select a material for the test bed, but instead chooses between two

pre-defined scenarios that both force the use of the alternative material in later years. A typical

firm’s decision is, obviously, not as clear-cut. First, the firm has to recognize the need for a new

material, whether because of consumer demand, government regulations, or simply because the

current material will cease to be an option. It then has to identify which material to adopt for

its products in light of design criteria and constraints. Identifying materials, especially when

shared learning is involved, in turn requires a means to inform the materials selection decision

across multiple products as actions taken for one product can affect decisions for others. Only

once the preferred materials are identified can the firm determine whether any of them should

be introduced on a test bed—or by another such strategy—and which product would best serve

as that test bed.

A multi-product selection framework is therefore needed both to inform the materials selec-

tion decision and to analyze strategies a firm can adopt when introducing new materials. The

method identifies appropriate materials for use on a firm’s many products over a given time

horizon and is designed so that the firm has the option to consider shared learning between

products in the selection process. The following chapter describes the basic structure and im-

plementation of such a method. Two case studies are then used to demonstrate its application,

the first being the stylized exercise from this chapter and the second, the case of an automaker

seeking to improve its fleet’s fuel economy through use of alternative, lightweight materials. In

both instances, the basic multi-product selection framework is tailored to account for additional

assumptions and details of each particular case.
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Chapter 5

Materials Selection for Multiple

Products

Although more complicated, an extended scope of a traditional materials selection method is

necessary if a firm wishes to consider property evolution in the selection process—particularly

when those properties are affected by shared learning. An analysis at the single product level is

unable to comprehend this because it necessarily assumes the product is manufactured indepen-

dently of the firm’s other products; the firm is thus unable to share any experience it has gained

from working on that product with any others. This is shown in the preceding chapter with a

stylized exercise, which illustrates that the sharing of experience among products is needed to

achieve the real benefits of learning. Even though the exercise simply compared the manufac-

turing cost of two scenarios and did not explicitly consider materials selection, it nonetheless

indicates there is a whole class of problems that an analysis limited to a single product is unable

to explore—such as the use of a test bed to introduce new materials to a firm’s products. This

chapter goes beyond the stylized exercise and constructs a framework for incorporating shared

learning into a multi-product materials selection method. The framework is then demonstrated

with the stylized exercise from Chapter 4, as well as with a case study of an automaker seeking

to improve the fuel economy of its fleet through use of alternative lightweight materials.
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5.1 Materials Selection Framework

Assessing the impact of the consideration of learning on a firm’s preferred materials first requires

the development of a selection method that is capable of simultaneously identifying satisfactory

materials for use on a number of products or applications. What constitutes “satisfactory” is

defined by the design criteria—in this case, the total manufacturing cost of all products given

the material selected for each one. Property evolution through learning can then be incorporated

into the selection method. If cost is the only property that evolves, the new method can be used

in a fashion similar to the traditional method presented in Section 3.1 and applied in Section 3.2:

to compare the preferred materials based on short- and long-term (i.e. unlearned and learned)

manufacturing costs to those selected by considering cost evolution due to shared learning over

the firm’s time horizon.

The explicit consideration of evolution in a multi-product manufacturing cost calculation,

however, requires that the selection method include multiple periods, much like the stylized

exercise. If the method is to be able to consider the use of test beds or other such strategies for

introducing materials, it will need the option to alter the preferred materials for any product

at various points throughout the firm’s time horizon. A test bed, for instance, depends on the

firm being able to implement a new material on one of its products, and only later switch to

the new material in its other products, once it is comfortable working with that material. More

generally, a firm may need to switch materials in response to evolution in material properties,

design criteria, or other constraints. In other words, if the firm were limited to selecting one

material per application over the entire time frame, it would not be able to adapt to changes

in the problem’s parameters or context. The selection method proposed in this chapter will

therefore not only account for selection across multiple products or applications, but also for the

evolution of the manufacturing cost associated with each material and, by extension, the firm’s

preferred materials over the time horizon. Thus, any proposed solution or selection decision made

using this method will specify which materials are preferred for each product and when they are

used within the problem’s time frame.

Figure 5-1 presents a diagram of the multi-product, multi-period selection framework. An in-

teger linear program (ILP) is first used to identify an appropriate material for each product given

time-invariant material properties, but time-varying constraints. This optimization method, by

78



M
at

er
ia

l O
pt

io
ns

Time

Applications

+
Time-independent attributes

Time-varying constraints

Integer Linear
Program

M
at

er
ia

l O
pt

io
ns

Time

Applications

+
Time-varying attributes

Time-varying constraints

GA seed solution

Genetic
Algorithm

M
at

er
ia

l O
pt

io
ns

Time

Applications

Final solution with
optimized manufacturing cost

Figure 5-1: Diagram of multi-product materials selection method.

definition, requires that both the objective function and constraints be linear functions of the de-

cision variables (i.e. whether or not a material is selected for a particular product); consequently,

it cannot consider learning in the calculation of manufacturing cost because learning is a non-

linear operation due to its use of cumulative volume to predict the extent to which costs have

evolved. Instead, its resulting combination of materials and products is used to seed a genetic

algorithm (GA), which evaluates the same selection problem using the same material, products,

and constraint space, but without any linear restrictions. The GA is used to arrive at the final

selection decision, one that accounts for learning in the selection process. A seed value, however,

is used because a GA is not guaranteed to arrive at the best solution—merely an acceptable one;

the seed from the ILP guarantees that the final solution will be at least as satisfactory as the one

provided by the ILP.

The remainder of this section describes the selection method in greater detail for the general

case of materials selection across a firm’s products. Later, when the model is demonstrated with

case studies, case-specific calculations and constraints are introduced.

5.1.1 Manufacturing Cost

For simplicity, the multi-product selection decision is made according to a single metric: total

manufacturing cost of all the products over the firm’s time horizon. Product-material combina-

tions that have lower total manufacturing cost are deemed “better” than those incurring higher

costs. While, again, it is more economically accurate to select materials based on firm profitabil-
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ity rather than production cost, working with the latter as the decision metric is the easier option

as it does not require knowledge of either the price elasticity of demand or the profit margins of

the products. Profitability, though, can be substituted for production cost in the model frame-

work and is anticipated to make a difference in the selection decision, particularly when demand

elasticity is a strong function of vehicle platform; this is illustrated in Appendix A.

Calculating total manufacturing cost is a relatively straightforward process when unit costs

are time-invariant and do not evolve—as is the case for analyses that consider only short- or

long-term manufacturing cost. Since unit costs do not change, the total manufacturing cost of

any given combination of materials and products is simply the sum of the unit cost of each

selected material, multiplied by the annual production volume of the associated product. The

calculation, however, is more complicated when learning by doing is explicitly considered. Even

if the decision’s context (such as operational conditions or market conditions) does not change,

manufacturing cost will evolve because the firm gains experience and, in doing so, reduces its

expenses. Adding learning curves to the manufacturing cost calculation creates links among

products that share manufacturing processes (or more generally, resources) in that each product

contributes to a firm’s experience working with its selected material. Experience is measured by

cumulative production volume and is used to predict the extent of evolution in a firm’s cost. The

consideration of learning also has inter-temporal consequences because actions taken today can

affect future costs and therefore future decisions made by the firm.

The calculation of the total manufacturing cost for an arbitrary selection decision (i.e. any

given combination of products and materials) involves dividing the decision’s time horizon into

periods of equal length. The same period-based approach was used in the stylized exercise and is

continued here because it simplifies the calculation process and limits the number of decisions the

firm has to make over the time horizon. If cost evolves as the firm learns, the average unit cost of

a material is approximated based on the cumulative volume of the manufacturing process used to

form that material at the beginning of the current period and at the end of the period; otherwise,

short-term or long-term unit costs are used. The resulting unit cost is then multiplied by the

annual production volume of its associated product to arrive at the manufacturing cost of that

material-product pair in the current period. These calculations are repeated for all the preferred

materials in all periods and summed to generate the final value of the objective function. If
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necessary, material options are separated according to manufacturing process to accommodate

the differences in cost structure and in learning rate and scope between the processes.

5.1.2 Combinatorial Optimization

So far, the methodology discussion has revolved around calculating the decision metric—total

manufacturing cost given the preferred materials for a number of products over the firm’s time

horizon. While the methodology thus far can now perform the necessary calculations to evaluate

any given selection decision, it still lacks a means to arrive at a good decision. For problems

of limited scope with only one or two products and few material options for each, such as the

stylized exercise, this additional step is unnecessary because it is possible to generate all feasible

combinations of materials and products, and identify the one that minimizes total manufacturing

cost. An enumeration approach, however, is impractical for problems with larger scopes, partic-

ularly when feasible combinations have to be identified for each period during the time horizon:

the number of these combinations grows exponentially with each additional period, product, or

material. Consequently, an alternative means to handle larger scale problems is necessary.

One possible way to address the issue is through the use of combinatorial optimization. These

optimization algorithms are specifically designed to cope with problems which have a discrete,

finite set of alternatives, but for which the alternatives may be too numerous for exhaustive

search. As with most optimization approaches, they optimize an objective function subject to

problem constraints. For the materials selection problem described above, the objective func-

tion is represented by manufacturing cost and the decision variables by the material options for

each product. Each decision variable thus indicates whether a material is used on its associated

product in a particular period.

Constraints

Often, optimization problems have constraints that restrict the values of the decision variables.

The constraints for this particular problem place restrictions on which materials can be used

to ensure that the resulting combination of products and materials is feasible. While the exact

nature of the constraints will depend on the implementation of the method, the more common

restrictions and how they relate to the problem at hand can still be discussed in the general sense.
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The constraints used by the multi-product materials selection problem concern whether a

material cannot, can, or should be used given the implementation of another material. In the

simplest case, no constraint exists and the decision to use one material is completely independent

of the decision to use another. This would be the situation for material decisions concerning two

distinct products or applications: for example, an automaker’s selection of aluminum for the

body of a midsize car should have no bearing on its choice of material for the floor mats of a

large SUV. In another case, the two materials are incompatible or “conflict” with each other so

the firm is forced to choose between them because it cannot implement them both. An example

of this is the selection of two or more materials for an application designed to only implement

one. The outer panel of a car door, for instance, cannot be manufactured from both aluminum

and high-strength steel: at most one material can be selected. A conflict constraint can also

apply to the selection of materials for separate applications within the same product, particularly

when there will be corrosion or other reliability problems if certain materials are selected for

those applications. Finally, the two materials may “require” each other for implementation so

that if one material is present, they both must be and vice versa. This can happen when two

or more manufacturing processes are required to form a single material design (as described in

Section 5.1.1), but each process is assigned a separate decision variable. The selection method

will therefore need a means to ascertain that all pieces of that design are included in order to

account for its full cost.

Optimization Methods

At this point, it is now possible to identify optimization methods that can be applied to solve the

above materials selection problem. Potential approaches include

v Exhaustive search

v Linear programming

v Non-linear programming

v Dynamic programming

v Genetic algorithms

v Simulated annealing
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These approaches vary in whether they are able to find the global optimum or simply a satisfac-

tory solution. Exhaustive search, linear programming, and dynamic programming fall into the

former category, but each is suited to different classes of problems. Exhaustive search can be ap-

plied to just about any optimization problem, but is impractical for large-scale problems because

it considers every possible combination of decision variable values in its quest to find the optimal

one. Linear programming, on the other hand, is applicable to large-scale problems, but is limited

to those whose objective functions and constraints are linear functions of the decision variables.

Unfortunately, this requirement excludes the material selection problem described above due to

its inclusion of learning in the objective function calculation: learning is a non-linear operation

because of its use of cumulative volume to predict the extent to which a firm’s costs have evolved.

The cumulative production volume of a common resource is a function of the decision variables

of the applications (or products) that use that particular resource. Since this cumulative volume

represents a firm’s experience and thereby, how far down the learning curve the firm has pro-

gressed, it is required to predict the evolved unit costs of each of those applications that share the

common resource. These unit costs are, in turn, multiplied by the production volumes of their

respective applications and by decision variables, which indicate whether or not the application

is used. If the learning curve is linear with respect to cumulative volume, this leads to an objec-

tive function (represented by manufacturing cost) that is a second degree polynomial and clearly

not linear.

Dynamic programming, on the other hand, is capable of handling large-scale problems with

non-linear objective functions and constraints; however, accounting for shared learning among

applications is not feasible with this method. Dynamic programming copes with large-scale prob-

lems by breaking them down into independent sub-problems. Creating separable sub-problems

in the presence of shared learning is not possible because of the system-wide interaction of ma-

terials options through shared manufacturing processes, and the use of cumulative volume to

predict cost. For instance, without learning, each period within the time horizon could rep-

resent a sub-problem. The method could then identify the preferred material options in each

sub-problem independently of all other sub-problems. With shared learning, however, the sub-

problems—periods—are no longer independent because decisions made in earlier periods affect

the cumulative volumes seen in later periods and thereby, the materials selected in those later
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periods.

The other methods, non-linear programming, genetic algorithms, and simulated annealing

do not guarantee they will find the global optimum, but have fewer restrictions on the classes

of problems they are suited for. Non-linear programming is like linear programming, but with-

out the linear requirements and consequently can be more resource-intensive to solve. Genetic

algorithms, a subclass of evolutionary algorithms, are a good general-purpose optimization tool.

They do not exhaustively search the solution space, however, and therefore may only find a local

optimum. Finally, simulated annealing is comparable genetic algorithms, but adopts a different

approach to exploring the solution space and covers less ground in contrast to genetic algorithms.

The preferred method—genetic algorithms or simulated annealing—will ultimately be problem-

dependent as for different problems, simulated annealing can perform better or worse than a

genetic algorithm [48, 73, 82].

5.1.3 Implementation

Ultimately, a combination of an integer linear program (ILP) and a genetic algorithm (GA) was

chosen for implementing the multi-product, multi-period materials selection framework. The

ILP is first used to optimize manufacturing cost in the absence of cost evolution from learning.

An integer linear program, rather than a linear program, was picked because the problem formu-

lation requires binary decision variables. The resulting selection decision from the ILP is then

used as a seed value for the GA to provide the GA with a starting point for its optimization pro-

cess. Manufacturing cost is then optimized using the GA which, unlike the ILP, considers cost

evolution in the calculation of the objective function. The combination of materials and products

suggested by the GA represents the final solution to the materials selection problem.

Seeding the GA ensures that its solution will be at least as good (in terms of objective func-

tion value) as that from the ILP. Without the seed, the GA randomly selects its starting points

and therefore cannot be guaranteed to arrive at a better solution than the ILP. The GA can be

run without a seed, however, and in some cases, this may be advantageous, especially if the

consideration of learning has a significant impact on the preferred materials suggested by the

GA (in contrast to those selected by the ILP). Using both models also facilitates the comparison

of selection decisions made with and without considering cost evolution from learning to assess
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whether its consideration impacts the preferred materials.

Integer Linear Programming

The integer linear program was written with the LINGO software package. Code for the au-

tomotive case study (Chapter 6) can be found in Appendix B. Given a linear objective function

and linear constraints, the ILP uses a branch-and-bound algorithm to find the decision variable

values that optimize the objective function, total manufacturing cost.

Binary decision variables are used for the materials selection problem, with each variable indi-

cating whether or not a material is implemented on its associated product in a particular period.

For instance, if a firm is seeking to select materials for three products, each with four material

options, over a time horizon divided into three periods, 36 (= 3× 4× 3) decision variables are

required for a total of 236 ≈ 68× 109 possible combinations of materials, products, and periods.

Not all these combinations, however, are feasible: assuming each product can only accommodate

one material at a time, only (43)3 ≈ 262× 103 will be permissible. Infeasible combinations are

eliminated with the conflict and requirement constraints described above.

Genetic Algorithms

A materials selection method based solely on an ILP is unable to account for cost evolution in

the objective function calculation. In order to overcome this problem, a genetic algorithm also

evaluates the selection decision and assesses the impact of considering learning on the preferred

materials. The ILP’s solution is used to seed the GA if the latter is unable to identify a better

solution—that is, one with a lower total manufacturing cost—than the ILP.

The GA was implemented using MATLAB’s Global Optimization toolbox; Appendix C con-

tains the code for the automotive case study. A typical genetic algorithm begins with a set or

population of randomly generated candidate solutions, known as chromosomes, to the optimiza-

tion problem. This population represents the first generation of chromosomes. The best or fittest

solutions, as dictated by the objective or fitness function, are identified and others discarded. The

remaining solutions become the parents and are combined via crossover functions and mutated to

create a new generation of chromosomes. This process repeats until the solutions converge or a

predetermined generation limit or time limit has been reached. Since only fitter chromosomes
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Figure 5-2: Example of a bitstring chromosome for a genetic algorithm.

survive and are used to create each new generation, the algorithm is able to improve the solution.

A genetic algorithm can be designed to either use the same binary decision variables as the

ILP, resulting in a bitstring chromosome, or a chromosome that is customized for the problem

at hand. Figure 5-2 contains an example of a bitstring chromosome for a firm seeking to choose

between four material options for three products, over a three-period time horizon. Each bit or

gene indicates whether or not a material is implemented on its associated product in a particular

period.

Since the firm in the stylized exercise has only two material options—the baseline and an

alternative—the corresponding case study with the multi-product selection method uses a bit-

string chromosome. In contrast, a different chromosome is employed by the automotive case

study to reduce its search space (see Section 6.2.5).

Aside from the seed value, the initial population for a GA is randomly generated; conse-

quently, the initial generation of chromosomes is not guaranteed to satisfy all problem con-

straints. If the GA were then to eliminate all chromosomes that do not satisfy all constraints, it

is highly probable that the resulting population would be an empty set. Therefore, instead of

viewing constraints as binary—either they are satisfied or they are not—and eliminating chromo-

somes that do not meet all the criteria, the GA in this study keeps chromosomes even when they
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Table 5.1: Genetic algorithm parameters used in automotive case study.
GA Parameter Value

Population Size 8 × # of decision variables
Max Generations 100
StallGenLimit 50
TolFun 1× 10−6

Selection Function Tournament
Crossover Fraction 60%
Crossover Function Two-point crossover
Mutation Function Uniform
Mutation Rate 1%

do not satisfy all constraints but takes this into account when calculating each chromosome’s fit-

ness. By treating the constraints as additional objective functions to be optimized (e.g. minimize

the number of conflicting materials in the chromosome), the GA is able to preserve the genetic

diversity of its candidate solutions and avoid eliminating its entire initial population.

Genetic algorithms, however, are best suited to solving single-objective problems, so some

modification is required. One option is to assign each objective function a weight and combine all

weighted objective function values into a single metric that is then optimized by the algorithm.

Another approach, described by Roth et al. [63], is to compare a randomly chosen objective

between two candidate solutions. The fitter solution (according to the objective) is kept and

the other discarded to be later replaced in the next generation. The proposed selection model

uses the former option because, of the two options, it is more adaptable to MATLAB’s genetic

algorithm framework.

Choosing appropriate values for algorithm parameters is important, as these parameters gov-

ern the GA’s performance and its ability to optimize the objective function. Unsuitable values

may lead to wasted computational effort or prevent the algorithm from finding a reasonable

solution. Table 5.1 shows the parameters and their values used in the GA model for the auto-

motive case study. A dynamic population size that changes according to the number of decision

variables in the problem is used to accommodate different problem scales. The next three param-

eters in Table 5.1 set the algorithm’s termination conditions: calculations stop when the GA either

reaches the maximum number of generations allowed, or has run for a set number of generations

with minimal change in the value of the objective function. The selection function defines the

selection algorithm used to choose chromosomes that serve as parents to the next generation.
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Figure 5-3: Examples of chromosome crossover and mutation.

Crossover fraction determines the fraction of the population that is replaced in each generation,

and the related crossover function, the algorithm the GA uses to combine chromosomes and cre-

ate the next generation. Two-point crossover is chosen for the case studies because it is one of the

more common methods [54]. Finally, the mutation function completes the evolution to the next

generation by selecting zero or more decision variables in each chromosome for mutation, with

the mutation rate determining the probability each variable has of being mutated. Figure 5-3

shows crossover and mutation examples for a sample chromosome.

5.2 Case Study: Stylized Exercise

In the following section, the generalized materials selection framework is adapted to the styl-

ized exercise from Chapter 4 with the goal to test the capability of the proposed computational

approach by comparing its results to what is already known from stylized exercise. The same

products, materials, time frame, and constraint space are used as before. Unlike the stylized

exercise, though, the selection method has the ability to choose which material each product

should implement in each year. Therefore, instead of defining scenarios like those from exercise

(see Table 4.1), the method selects materials for each product by minimizing total manufacturing

cost given the problem’s constraints. These constraints are used to ensure that the alternative

material is the only permissible option in later years—same assumption as the stylized exercise.

Manufacturing cost is then minimized both with and without evolution in the alternative mate-

rial’s unit cost. Finally, the two resulting scenarios or selection decisions are compared to assess

whether the consideration of learning leads to a different decision and potentially, to the use of a
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test bed for deliberate learning by the firm. While the difference in the resulting decisions alone

should indicate whether a test bed makes financial sense for the firm, the total manufacturing

cost for each decision can also be compared to confirm the initial conclusion.

5.2.1 Case Study Specifics

The case study uses the same inputs as in Table 4.2 to calculate the firm’s total manufacturing

cost. This cost is minimized first assuming unit costs do not evolve and second, assuming cost

evolution due to learning takes place. When cost evolution is not a factor, either the short- or

long-term unit cost (Ci or C f ) of the alternative material is used in the integer linear program

to arrive at a selection decision. Introducing cost evolution into the selection process, however,

is not possible with an integer linear program for reasons discussed previously, and therefore

requires use of the genetic algorithm. The second selection approach is seeded with the result

from the integer linear program to ensure it performs at least as well as the first (although in this

case, it does not matter because of the small search space).

To simplify cost calculations, the genetic algorithm approximates the area under the alterna-

tive material’s learning curve using the unit cost at three points: the cumulative volume at the

beginning of the year, midway through the year, and at the end of the year. Shared learning

inputs indicate which materials (in this case, the alternative material on Product A and on Prod-

uct B) share manufacturing processes and thus, experience. As before, the time frame is divided

into six years, each year representing a period in the model with the firm permitted to switch

materials between periods. A constraint that places a minimum on average product mass is also

introduced during the final few years of the time frame. This constraint is formulated to favor

the alternative material, whose design is assumed to have a lower mass than that of the baseline

material. Since the stylized exercise involves only two materials—a baseline material and an

alternative—there is no need for the conflict or required constraints discussed in Section 5.1.2.

Neither material is divided by manufacturing process and the optimization models are designed

to default to the baseline option when an alternative material is not selected. If there were two

or more alternative materials however, a conflict constraint would be necessary.
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Table 5.2: Selection decisions identified by the selection method for the stylized exercise.
Decision 1 Decision 2

Year Product A Product B Product A Product B

1 BL BL ALT BL
2 BL BL ALT BL
3 BL BL ALT BL
4 ALT ALT ALT BL
5 ALT ALT ALT BL
6 ALT ALT ALT BL

Table 5.3: Total manufacturing costs of each decision in the stylized case study.
Cost Evaluation Approach Decision 1 Decision 2

Short-Term $687 M $690 M
Long-Term $615 M $608 M
Evolving $670 M $669 M

5.2.2 Results

Figure 5.2 shows the preferred materials based on minimizing the firm’s total manufacturing cost

over a six-year time horizon. These selection decisions are the same as the scenarios defined for

the stylized exercise in Table 4.1. The decision on the left of Figure 5.2 results from considering

only short-term manufacturing costs—without any cost evolution from learning—in the selection

process. Under these assumptions, the alternative material is the more expensive option so the

firm prefers to use the baseline material in both products for as long as possible, and switches

to the alternative material only when it is absolutely necessary in the fourth year. If, instead, the

cost is permitted to evolve, the result is the selection decision on the right of Table 5.2, in which

the firm uses a test bed to deliberately gain experience with the alternative material. Removing

the test bed from the picture increases total manufacturing cost (Table 5.3) despite the presence

of learning in both calculations. This, in turn, indicates that using Product A as a test bed for the

introduction of the alternative material reduces overall cost.

The right-hand selection decision is also the result of considering only long-term manufactur-

ing costs without any cost evolution in the selection process. In this case, the alternative material

is always favored on Product A because its long-term unit cost is lower than the unit cost of

the baseline material. Table 5.3 shows results for the total manufacturing costs of both selection

decisions in Table 5.2 using all three cost evaluation approaches. The preferred selection deci-
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Table 5.4: Test bed start date given year constraint becomes binding.
Year constraint Year to start

is binding test bed

1 N/A
2 1
3 1
4 1
5 never
6 never

sion in each row is highlighted in bold, with the bottom row confirming the stylized exercise’s

conclusion that under certain conditions, introducing a new material on a test bed can lead to

reductions in overall cost.

The selection model can also replicate the results of the sensitivity analysis of the stylized

exercise—in particular, the timing of the constraint and whether it affects a firm’s decision to

use a test bed. The earlier exercise concluded that a firm will not use a test bed if the constraint

is sufficiently delayed because the cost of doing so outweighs any savings the firm may realize

from the extra learning. The analysis, however, contained the assumption that the firm always

started using a test bed in Year 1 in order to avoid evaluating all possible combinations of when

to start with the test bed given the timing of the constraint. A similar assumption is unnecessary

for the current selection model because it has the freedom to decide whether or not to use the

alternative material in the earlier years before the constraint becomes binding. The model can

therefore be run to assess whether it ever makes sense to start the test bed after the first year.

Table 5.4 shows the results of this analysis, which, as it turns out, concludes that the firm

should use the test bed starting in Year 1 or not at all. This is because when the cumulative

volume of the alternative material by the end of the time frame is too low (i.e. cumulative volume

∼ Vth), the firm does not realize enough savings to offset the test bed’s cost. On the other hand,

when a large volume of products is manufactured with the alternative material (i.e. cumulative

volume ∼ Vhi), each year the firm uses Product A as a test bed allows it to shift the units of

Product B to the right along the x-axis of the alternative material’s learning curve. This in turn

increases the number of Product B manufactured at long-term unit cost and decreases the number

manufactured at short-term unit cost. Therefore, as long as the savings—approximated by the

difference in short- and long-term unit costs of the alternative material on Product B—outweigh
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the added cost of using a test bed—defined by the difference between the short-term unit cost

of the alternative material and the unit cost of the baseline material on Product A—the firm will

have an incentive to use as many years of the test bed as possible. This, of course, is subject to

discount rates and the problem’s time horizon: if, for instance, the constraint is several years into

the future, the firm may not want to begin immediate use of a test bed.

5.2.3 Conclusions

The results of the above case study illustrate that the proposed materials selection method is able

to account for cost evolution through learning in its evaluation of a firm’s total manufacturing

cost, and thus conclude that under certain circumstances, it is financially beneficial for the firm to

use a test bed for the introduction of a new material. This is the same conclusion reached by the

earlier stylized exercise and therefore demonstrates that the formalized framework is capable of

performing the same analysis. The materials selection method, though, is more flexible and able

to choose among different material options—in contrast to the stylized exercise which simply

compares pre-defined scenarios. Consequently, it expands the potential analyses beyond what

the stylized exercise is capable of. The next section presents a larger multi-product case study

concerning the materials selection in the automotive industry.
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Chapter 6

Case Study: Selection in the Automotive

Industry

The goal of the preceding chapter was to apply the multi-product selection method to the stylized

exercise and demonstrate that the selection method was able to arrive at the same conclusion as

when the exercise was first presented in Chapter 4. The stylized exercise case study was necessary

to confirm that the proposed selection framework behaves as expected before presenting a larger

and more complex case study—one that is not practical to analyze by hand, as was done for the

stylized exercise. The new case study, presented in this chapter, is used for further exploration of

the consequences of considering cost evolution due to learning on the selection decision and of

potential strategies a firm can adopt when introducing new materials. This case study, as with

the single-product study, concerns an automaker seeking to improve fuel economy by reducing

vehicle weight via the use of alternative, lightweight materials—only this time, the focus is on

multiple applications of materials within the automaker’s fleet rather than just on the body-in-

white of a single car. Multiple vehicle platforms are included in the scope, which also considers

shared learning and thereby the ability to evaluate an automaker’s use of test beds to deliberately

gain experience with new materials.

Before the case study analysis can be performed, however, the proposed selection method

has to be tailored to this particular case with relevant assumptions and constraints. Once this is

completed, case study inputs, along with selection results and a sensitivity analysis are presented.

The sensitivity analysis investigates the conditions necessary for cost evolution to have an impact
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Figure 6-1: Vehicle closures [76].

on the selection decision and when using a test bed makes fiscal sense for the automaker.

6.1 Scope

In this case study, an automaker is seeking to select alternative materials for the body-in-white

(Figure 3-2) and the closure (Figure 6-1) subsystems in three vehicle platforms within its fleet

over the course of a 16-year time frame. The vehicle platforms include a compact, a midsize, and

a large car. Four alternative materials are available for each subsystem, plus a baseline material

which the automaker currently uses. In all cases, the baseline is mild steel. The alternative ma-

terials include high-strength steel, aluminum, glass fiber composite, and carbon fiber composite

for the body—same options as in the earlier case study (Section 3.2)—and high-strength steel,

aluminum, magnesium-aluminum, and sheet molding compound (SMC) for the closures. Fig-

ure 6-2 presents the material choices facing the automaker for a single period within the time

frame.

6.2 Case Study Specifics

The multi-product materials selection method presented in Chapter 5 is for a generalized prob-

lem. The following section details some of the modifications and assumptions made to tailor the

generic method to one for materials selection in the automotive industry.
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Figure 6-2: Vehicle platforms, subsystems, and material options included in case study.
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6.2.1 CAFE Constraint

The first of these modifications is a constraint on the decision variables. This new constraint

represents CAFE or the Corporate Average Fuel Economy regulation, which sets a minimum

target for the average fuel economy of all new vehicles sold by a manufacturer within a model

year. When a lighter weight material replaces the current material of a vehicle’s subsystem,

it changes that vehicle’s mass and thereby its fuel economy as well as the automaker’s CAFE

number. This CAFE number is calculated using a sales-weighted harmonic average following the

equation

CAFE Targety ≤
∑
v

volv,y

∑
v

volv,y/FEv,y
(6.1)

where volv,y is the sales volume of vehicle v in model year y and FEv,y is the fuel economy of

that vehicle. In this case study, the automaker has to select materials that enable it to improve

the fuel economy of its vehicles and satisfy the CAFE target. Automakers that fail to meet CAFE

are penalized. The regulation, however, does permit some flexibility in the calculation of CAFE

numbers, primarily by granting surplus “credits” to automakers that exceed the CAFE target

in a given model year. The automakers can then apply these credits to any of the three years

preceding or following that year of surplus to make up for any past or future deficits. Alternative

fuel vehicles are also accounted for in CAFE calculations, but there is a limit to how much they

can contribute to an automaker’s CAFE number [8].

Imposing a CAFE constraint not only makes the case study more representative of the con-

ditions an automaker faces, but also forces the materials selection model to consider more than

just the lowest-cost options. Over the next decade, the CAFE target is scheduled to increase, as

required by the Energy Independence and Securities Act of 2007 [70], and affirmed by President

Barack Obama in his 2009 announcement for a national fuel economy and greenhouse gas stan-

dard [39]. The standard has also been reformed to account for the size distribution within an

automaker’s fleet. NHTSA has set the CAFE targets through the year 2016 [9] (Figure 6-3); the

rapid change of the standard, after nearly two decades of holding steady, will force traditionally

conservative automakers to evaluate and adopt alternative materials, as well as other technolo-

gies (e.g. hybrid powertrains or continuously variable transmissions), to increase their vehicles’

fuel economies and avoid penalties. Automakers seeking to improve their fleet’s fuel economy
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Figure 6-3: Car and light-duty truck CAFE targets over the years [3, 6, 9].

will likely need a systematic means to identify the best technology and material options.

Calculating the Automaker’s CAFE Number

A few assumptions are made to simplify the CAFE calculation for this case study. First, the

automaker is required satisfy the target in each model year: surplus or deficit credits are not

factored into the calculations. As a result, penalties are not imposed because the constraint

implies that the automaker will meet CAFE. Calculations also assume the unreformed version

of CAFE—so without the size-based metric. Second, alternative fuel vehicles are not included

in the problem. All the vehicles in this case study use a standard internal combustion engine.

Finally, the automaker is assumed to sell all the vehicles it manufacturers in a model year so that

the sales volume of each vehicle is equal to its production volume. This is a realistic assumption

for an automaker because its production plans are often set years in advance and are difficult, as

well as costly, to alter. Consequently, the automaker will often prefer to follow its plans and do

what it can to sell its vehicles.

Even with these simplifications to CAFE, Equation (6.1) cannot be used as presented to calcu-

late the automaker’s CAFE number in a linear program because it is non-linear with respect to

vehicle fuel economy and thereby the decision variables. Instead, the constraint equation has to
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be rewritten in terms of fuel consumption—the reciprocal of fuel economy—which describes the

amount of fuel a vehicle requires to travel a fixed distance. Fuel consumption is often expressed

in gallons per mile or in liters per 100 kilometers; improvements correspond to a reduction in fuel

consumption so that less fuel is used per unit distance. In fuel consumption space, Equation (6.1)

becomes

CAFC Targety =
(

CAFE Targety

)−1

≥
∑
v

volv,y · FCv,y

∑
v

volv,y
(6.2)

where FCv,y is the fuel consumption of each vehicle and equal to FE−1
v,y .

The initial fuel consumption of each vehicle is calculated from the inverse of its fuel econ-

omy. Improvements in fuel consumption, like those in fuel economy, depend on both the weight

savings associated with using an alternative, lightweight material, as well as how a vehicle’s fuel

consumption responds to changes in vehicle weight. This latter parameter is often expressed

as a linear relationship between the percent improvement in fuel consumption and the percent

reduction in vehicle weight. Typically, the improvement in fuel consumption is normalized to

its change per 10% reduction in vehicle weight—for example, a vehicle may experience a 5%

improvement in fuel consumption for every 10% reduction in weight. The exact numbers will

be sensitive to the specifics of the vehicle’s powertrain and its driving cycle [60, 78]. The weight

savings associated with an alternative material is also design-specific and depends on the new

material as well as the design of the subsystem using it. A vehicle’s final fuel economy after

material substitution is therefore

FCv = FCi + ∆FC

= FCi +
η

0.10
∆M
Mi

FCi (6.3)

FCi and Mi are, respectively, the initial fuel consumption and mass of the vehicle, and η, the per-

cent improvement in fuel consumption per 10% reduction in vehicle weight. ∆M, the change in

vehicle mass, is the only variable affected by the different alternative materials and represents the
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sum of the weight savings from each subsystem or application that implements a new material:

∆M = ∑
s

∆ms

where ∆ms is the weight savings attributed to the use of a new material on subsystem or appli-

cation s. Once the total weight savings for a vehicle is known, the improvement in that vehicle’s

fuel consumption can be calculated. This calculation, in turn, is performed for each vehicle and

the results used to calculate the automaker’s new CAFE—or “CAFC”—number.

6.2.2 Time Frame Periods

In addition to the CAFE constraint, the automotive case study makes assumptions regarding the

selection model’s time horizon. As was previously noted, a defined time frame is necessary in

order to assess the impact of learning. This time frame is divided into periods to permit the firm

to switch materials and potentially expand use of a new material beyond a test bed. Accordingly,

the case study’s 16-year time frame is divided into four periods of four years each—meaning that

the automaker effectively chooses materials for its vehicle subsystems four times. A four-year

design cycle was chosen not only because it reduces the problem scale from having to select

a new material every year, but also because it represents the approximate frequency at which

automakers redesign their vehicles and implement substantial changes such as new materials

for the body or closures [5]1. Four years, however, is a long time between each recalculation of

learned manufacturing unit cost. Therefore, this cost is updated yearly rather than every design

cycle (a.k.a. period).

To simplify the implementation of the selection model, the design cycles of the three vehicle

platforms take place simultaneously so all three platforms are up for redesign during the same

model year. The CAFE target, likewise, changes only when the automaker modifies its vehicles—

that is, at the beginning of each design cycle. While this scenario is not wholly realistic given an

automaker’s limited vehicle development resources and the rapidly changing CAFE target in the

coming years, it is nonetheless sufficient for assessing the impact of considering learning on an

automaker’s material preferences.

1A four-design cycle falls somewhere between the 2 to 3-year average refresh cycle and the 5-year average design
cycle used in industry.
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6.2.3 Cost Minimization Versus Profit Maximization

The general selection method presented in Section 5.1 defines a metric, total manufacturing

cost, for comparing different combinations of materials and products and for determining which

combinations are better. Although this case study relies on the same metric, it should be noted

that, in multi-product problems, the cost-minimizing solution is not necessarily the same as the

profit-maximizing solution—and in general, one would expect a firm to maximize profit rather

than minimize cost. The difference between these two objectives arises from a firm’s ability to

alter the profit margins as well as production volumes of its products in order to increase its

revenues. Introducing these levers, however, makes profit maximization a more difficult problem

because additional factors such as the products’ price elasticity of demand have to be taken into

account.

Rather than identifying these price elasticities and profit margins necessary to maximize the

total profit of all vehicle platforms in an automaker’s fleet, this case study instead simply mini-

mizes the total cost when selecting materials for each platform in the fleet. The two approaches,

however, are expected to lead to the same selection decision—at least in this particular case—

because of the CAFE constraint which, as it becomes more binding, necessitates that certain

materials be used to improve fuel economy, regardless of cost or profit. The production volume

lever can be removed to further simplify the problem because changes in volume are not only

difficult and costly for the manufacturer, but will also affect the automaker’s CAFE number and

lead to an even more complex optimization problem. Additionally, the automaker can set the

price of its products to ensure that consumers purchase the same number of vehicles with the

new material as with the original material. This will alter profit margins, but likely not enough

to affect the materials selection decision under a CAFE constraint (see Appendix A).

An approach to calculating total manufacturing cost is presented in the next section. This

metric consists of the cost of using the selected material on each product in each period within

the model’s time frame. The calculation itself is somewhat more complex than the one used by

the stylized exercise because it tries to accurately represent an automaker’s cash flow.
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6.2.4 Manufacturing Cost Decomposition

Manufacturing costs are limited to those of the subsystems that are the focus of the automaker’s

materials selection decision. The remainder of the vehicle is assumed to be the same regardless of

the materials chosen for the subsystems; therefore, its cost is not included in the calculations. The

manufacturing costs of the material options available in this case study are decomposed by man-

ufacturing process and again by cost category, as shown in Figure 6-4 for the aluminum and the

glass fiber composite bodies. At the highest level, cost is broken down according to the different

manufacturing processes required to produce the body (or closures) from the selected material.

This initial division is adopted so the selection model can more accurately account for the dif-

ferences in cost structure, as well as learning rate and scope, between the different processes.

For instance, manufacturing aluminum bodies requires four distinct processes: three forming

processes—die casting, extrusion, and stamping—plus assembly, during which the individual

parts are joined.

The cost of each manufacturing process is, in turn, broken down into dedicated investment

cost, non-dedicated investment cost, and variable cost, this time so that the model calculations

can more accurately represent a manufacturer’s cash flow. For the forming processes, dedicated

investment cost represents tooling—the stamping, extrusion, or other dies required to form a

specific part. These costs are typically paid at the beginning of a design cycle, when the au-

tomaker has to invest in new dies to manufacture its redesigned vehicle, and on an as-needed

basis throughout the cycle depending on how quickly the dies wear out. For the most part,

though, this cost is a fixed cost and independent of production volume. Variable costs, on the

other hand, scale with production volume. Materials, energy, and labor costs all fall under this

category. The final category, non-dedicated investment cost, represents investments, for example,

a stamping press, that can be used to manufacture a wide variety of parts. Equipment, building,

overhead2, maintenance, and working capital3 costs are all considered to be non-dedicated invest-

ment costs. Since these investments are assumed to be completely non-dedicated and operate at

full capacity, each product “pays” only for the time it uses a particular investment. Consequently,

2Overhead costs in the PBCMs represent the cost of indirect labor—so workers assigned to oversee other workers
or the process line.

3Working capital cost represents the revenue a firm could have realized had it taken the money used to manufacture
its products and invested it elsewhere for capital gains. The cost is incurred because the firm presumably has to pay
upfront for materials, energy, etc. and only later sees revenue from product sales.
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Body Design Material Mfg Process Cost Category Type

Glass Fiber
Composite

Aluminum
Spaceframe

Aluminum Die Casting

Extrusion

Stamping

Assembly

Dedicated
Non-dedicated
Variable

Tooling
Equipment, building, overhead...
Material, energy, labor

Dedicated
Non-dedicated
Variable

Tooling
Equipment, building, overhead...
Material, energy, labor

Dedicated
Non-dedicated
Variable

Tooling
Equipment, building, overhead...
Material, energy, labor

Dedicated
Non-dedicated
Variable
Equipment
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Figure 6-4: Manufacturing cost breakdown of aluminum and glass fiber composite bodies.
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the cost attributed to any given product scales with that product’s production volume, much like

variable cost. The same amortization assumptions from the earlier case study—a 13-year equip-

ment lifetime and a 40-year building lifetime—are used to calculate the per-unit equipment or

other non-dedicated investment costs.

Assembling vehicles is different from the processes used to form their individual parts (see

Section 3.2.1 for a description). The primary consequence of this difference is the need for a

fourth cost category, equipment cost, in addition to the three listed above. In assembly, the

equipment is neither completely dedicated nor completely non-dedicated. Rather, it is dedicated

to a vehicle design for the time that particular design is in production—in this case study, for

a design cycle or four years out of the equipment’s 13-year lifetime. Once the cycle is over, the

assembly line is dismantled and the equipment reused in a new assembly line for the next design.

The cost calculations represent this by assuming the automaker pays the full cost of the assembly

equipment up front at the beginning of the cycle, and then sells the equipment for its residual

value at the end of the cycle. A database is required by the selection method to estimate assembly

equipment, as well as tooling and building costs at different annual production volumes. Because

assembly lines scale serially with volume, there is no single number that represents the process’

fixed costs at all volumes. However, once the assembly costs have been obtained, they are treated

in the same manner as forming costs.

In addition to accommodating the different cost structures and learning rates and scopes

of each manufacturing process, breaking down manufacturing cost has other benefits. First, it

permits a more accurate representation of an automaker’s cash flow. Investment costs are paid

at the beginning of each design cycle, while variable costs and non-dedicated investment costs

are made on a yearly basis (Figure 6-5). Future costs are then discounted to account for the time

value of money. Second, the cost breakdown enables more accurate accounting of any experience

the automaker gains during the model’s time frame. In some cases, subsystem designs include

small parts (often reinforcements) that are manufactured using different materials or different

processes from the subsystem’s primary material (see Figure 6-4). The automaker can still learn

from producing these parts and share that knowledge with other designs or subsystems that

use the same material and process. For example, instead of experience gained with aluminum

closures being applied only to aluminum closures in other vehicles, it can also be applied to other
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Year Design Cycle 1

1

2
3
4

5

6
7
8

9

10
11
12

13

Dedicated
Variable + Non-Dedicated
Asembly Equipment
Variable + Non-Dedicated
Variable + Non-Dedicated
Variable + Non-Dedicated

-Asembly Equipment Residual Dedicated
Variable + Non-Dedicated
Asembly Equipment
Variable + Non-Dedicated
Variable + Non-Dedicated
Variable + Non-Dedicated

-Asembly Equipment Residual

Design Cycle 2

Dedicated
Variable + Non-Dedicated
Asembly Equipment
Variable + Non-Dedicated
Variable + Non-Dedicated
Variable + Non-Dedicated

-Asembly Equipment Residual

Design Cycle 3

Figure 6-5: Manufacturing cost cash flow.

designs or subsystems that use aluminum, such as Mg-Al closures or aluminum bodies. Third,

the separation of fixed costs from variable costs facilitates the calculation of manufacturing cost

at various production volumes. Once the inputs are generated, the selection model can then be

run independently of the process-based cost models that are required to predict manufacturing

cost (see Section 3.2.1). And finally, dividing manufacturing cost means that not only can the

learning rate and scope be chosen for each manufacturing process, but so can the components of

the cost that evolve as the automaker gains experience. In the case study, only variable costs and

non-dedicated investment costs are assumed to evolve since learning takes place by doing—that

is, by the automaker physically producing vehicles. Dedicated investment costs do not change

because there is presumably minimal opportunity to learn and improve the tooling, especially if

purchases take place only once per design cycle.

6.2.5 Chromosome Modifications

While there are many benefits to decomposing the cost of each material option into its com-

ponent manufacturing processes, there are also consequences. Instead of one binary decision

variable assigned to a material option, each option can now be associated with several decision

variables, each variable representing a manufacturing process used by that option in each de-
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Figure 6-6: Example of a bitstring and integer chromosome for the genetic algorithm in the
automotive case study.

sign cycle (bitstring chromosome in Figure 6-6). This not only increases the number of decision

variables—and therefore problem scale—but also necessitates use of the aforementioned conflict

and requirement constraints (see Section 5.1.2) to ensure that, at most, one material is selected for

each subsystem and that all components of that material are included in the cost and fuel econ-

omy calculations. While an integer linear program can handle a problem implemented in this

manner, the scale of the search space and its fragmentation by the constraints can be problematic

for a genetic algorithm.

Therefore, the integer linear program uses binary decision variables as in the stylized exer-

cise, but the genetic algorithm relies on a modified chromosome with integer decision variables

(bottom chromosome in Figure 6-6). In this alternative implementation, each gene or decision

variable represents the material choice for a subsystem in a single design cycle. Decision variable

values are restricted to a range of integers, each number corresponding to a material option for
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its respective subsystem—for example, zero represents the baseline material; one, high-strength

steel; two, aluminum, and so forth. The modified chromosome thus reduces the number of de-

cision variables in exchange for an increase in the number of states or values each variable can

adopt. Overall, this still reduces the search space—from 68× 109 to 262× 103 potential combi-

nations for a three-product, four-material, three-period problem (see Section 5.1.3). The fitness

function for this chromosome then recreates the bitstring chromosome to calculate total manu-

facturing cost so the genetic algorithm can use the same inputs, complete with materials costs

decomposed into component manufacturing processes, as the integer linear program.

Adopting this alternative implementation of the genetic algorithm’s chromosome not only re-

duces the size of the problem’s search space, but also eliminates the need for conflict and required

constraints. The smaller search space of the integer chromosome can have a drastic effect on the

algorithm’s runtime, particularly for larger-scale problems, and facilitates the identification of

feasible solutions, even when the genetic algorithm is run without a seed.

6.3 Inputs

The above details can now be used to build integer linear program and genetic algorithm selec-

tion models that will identify preferred materials for each subsystem and design cycle. These

preferred materials minimize total manufacturing cost, but still enable the automaker to satisfy

CAFE and other constraints. To calculate the manufacturing cost and fuel economy improve-

ment of the material options, however, the selection models require both vehicle and material

attributes, which are detailed below.

6.3.1 Vehicles

Vehicle attributes are shown in Table 6.1 for the three vehicle platforms that are available for

modification, plus a fourth “platform” that represents the remainder of the automaker’s fleet

and rounds out the fleet’s CAFE number. Sales fractions from 2009 EPA data [11] are used to

estimate the annual production volume of each platform, assuming a high-volume fleet. Fuel

economy is also taken from the same source, although the numbers used in this model are

increased by 5% from the EPA’s numbers. The change in fuel consumption with respect to
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Table 6.1: Case study vehicle attributes.
Curb Weight Initial FE % ∆FC per Ann. Production

Platform [kg] [mpg] 10% ∆wt Volume [#/yr]

Compact 1,357 26.99 6% 200,000
Midsize 1,549 26.36 6% 170,000
Large 1,613 23.31 6% 120,000
Remainder 1,814 30.00 0% 400,000

Table 6.2: Abbreviations for body and closure material options.
Body Closures

ID Primary Material ID Primary Material

MS Mild Steel MS Mild Steel
HSS High-Strength Steel HSS High-Strength Steel
AL Aluminum AL Aluminum
GF Glass Fiber Composite MG Magnesium & Aluminum
CF Carbon Fiber Composite SMC Sheet Molding Compound

vehicle weight reduction is based on work by Wohlecker et al. [78] and assumed to be constant

over all platforms.

6.3.2 Materials

All available material options for the bodies and closures are listed in Table 6.2; specific inputs

for a few midsize car bodies are shown in Table 6.3, with the remainder of the inputs for the

other materials and vehicle platforms detailed in Appendix D. The body designs are the same as

those used in the single-product case study. Since actual designs for three different car sizes were

not available, the dimensions and masses of the subsystems for the compact and large cars were

scaled from those of the midsize car. These designs served as the basis for generating inputs

used in the materials selection models.

The change in fuel consumption associated with each material option is related to the weight

of the alternative design relative to that of the current design (i.e. the mild steel design). Lighter

weight subsystems have more impact on fuel consumption, but are often associated with higher

costs. Calculating total manufacturing cost is more complicated than calculating vehicle fuel con-

sumption as it needs the individual costs of each design. As with the preceding automotive case

study, determining these costs requires more than just knowledge of the material and subsystem

because of their context-dependent nature. Process-based cost models are again employed to
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Table 6.3: Material options for three midsize car body designs. Long-term non-dedicated and
variable costs are shown.

ID Mild steel (MS) Aluminm (AL) Glass Fiber (GF)
Mass 322 kg 193 kg 219 kg

Material Mild steel Al Al Al GF composite Mild steel
Process Stamping Stamping Die casting Extrusion SRIM Stamping

Learning scope Low Medium Medium Medium Medium Low
Learning rate Slow Fast Slow Slow Slow Slow

Forming Costs
Variable $477 $223 $151 $267 $900 $42

Non-ded. investment $144 $67 $139 $226 $191 $11
Dedicated investment $70.3 M $33.4 M $5.0 M $420,000 $13.2 M $1.6 M

Allocation fraction 3.2% 3.8% 81% 29% 40% 0%
Investment life 500 M 500 M 120,000 34,800 165,000 500 M

Assembly Costs @ 170k
Variable $135 $166 $58

Equipment $41.2 M $61.1 M $17.1 M
Tooling $15.8 M $22.1 M $8.92 M

Building $14.2 M $19.8 M $6.62 M

predict dedicated investment (and assembly equipment) cost, as well as long-term variable and

non-dedicated investment cost. The same values for the exogenous variables and material prices

(Tables 3.2 and 3.3) are used. For this case study, however, two additional cost model outputs

are required: allocation fraction and investment lifetime, both of which are needed to more ac-

curately predict dedicated investment cost over a design cycle. Allocation fraction is primarily

used to determine the number of parallel lines necessary to meet a desired annual production

volume, while investment lifetime indicates how often tools wear out and whether they will have

to be replaced mid-cycle.

Once long-term variable and non-dedicated investment costs have been obtained from the

cost models, short-term (or unlearned) cost is then backed out based on the learning scope of

their respective manufacturing processes as in Section 3.2.1. The learning curves for the materials

use the same functional form as those in the single-product case study (see Equation (3.2) and

Figure 3-5). To simplify matters, manufacturing processes are assigned a low, medium, or high

learning scope and a slow or fast learning rate. These scopes and rates translate to the values

of S-curve parameters shown in Table 6.4. As before, these numbers are loosely based on the

parameters used by NHTSA in its 2011 CAFE target analysis [4], although they do not exactly

match those used for the midsize body-in-white in the first case study (Table 3.4). Finally, an

input table keeps track of which manufacturing processes are shared between subsystems and
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Table 6.4: S-curve parameter values for various learning scopes and rates.
Rate Scope Scope (σ) Threshold Volume (Vth) Max Volume (Vhi)

slow low 0.0 300,000 1,200,000
slow medium 0.4 300,000 1,200,000
slow high 0.6 300,000 1,200,000

fast low 0.0 175,000 700,000
fast medium 0.4 175,000 700,000
fast high 0.6 175,000 700,000

Table 6.5: CAFE targets for each design cycle in the selection model case study.
CAFE Target CAFC Target

Design Cycle [mpg] [L/100km]

1 27.5 8.56
2 27.5 8.56
3 28.5 8.25
4 28.5 8.25

vehicle platforms.

6.3.3 Other Inputs

Other inputs to the selection model include a discount rate and CAFE targets for each of the four

design cycles. An 8% discount rate was used for this study. CAFE targets are shown in Table 6.5

and are selected so that the automaker will see a step increase in the constraint (much like in the

stylized exercise). Although the target values are well below the CAFE standards of the coming

years (Figure 6-3), they were chosen to avoid over-constraining the problem, since only materials

solutions are available to the automaker in this case study.

6.4 Additional Assumptions

Before the selection results are presented, there are a few additional assumptions the integer

linear program and genetic algorithm selection models make in order to simplify their manufac-

turing cost and fuel consumption calculations:

v The material options have the same risk and are functionally equivalent in all respects other

than weight and cost; the automaker will therefore have no preference for any design other
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than for its contribution to improving fuel consumption and its impact on manufacturing

cost.

v A vehicle’s weight savings from its two subsystems are additive and independent of the

subsystem’s specific location in the vehicle. Fuel consumption improvement is also as-

sumed to behave linearly with the vehicles weight (see Equation (6.3)).

v For shared learning, each subsystem “unit” adds one unit to the cumulative volume of a

manufacturing process, despite the fact that it is likely composed of numerous parts that

are manufactured with that process.

6.5 Selection Results

The purpose of this case study is not only to demonstrate the capabilities of the proposed selec-

tion model with a larger, more realistic example, but also to assess the impact of expanding the

selection problem’s scope to encompass several products and the shared learning among those

products. An expansion in problem scope also enables the evaluation of strategies a firm can

adopt to introduce new materials; in particular, the use of a test bed and conditions that lead a

firm to opt for this approach. As with the preceding case studies, materials are selected using

the three representations of manufacturing cost: short-term cost, long-term cost, and evolving

cost, in which unit costs evolve due to learning by the automaker. The total manufacturing cost

over the case study’s time frame is calculated and the resulting selection decisions compared to

assess whether the consideration of learning impacts the decision and if so, in what ways. The

analysis is first run using the inputs as described in Tables 6.4 and 6.5. Additional analyses are

later performed to assess whether changes in conditions can impact the automaker’s preferred

materials and to identify potential strategies for introducing new materials.

Selection decision results given the above inputs are presented in Figure 6-7 for each of the

three approaches to calculating manufacturing cost (labeled on the left); preferred materials that

differ between approaches are highlighted in the figure. Table 6.6 contains corresponding man-

ufacturing costs for each of the three decisions. In order to directly compare decisions, the cost

of each is evaluated using all three calculation methods. That is, the total manufacturing cost of

the materials preferred when the automaker pays short-term costs is evaluated not only using

the short-term costs of the material options, but also as if the automaker had, instead, paid the
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Figure 6-7: Preferred materials in the automotive case study for each manufacturing cost calcu-
lation approach. CAFE targets in Table 6.5.

Table 6.6: Total manufacturing cost of selection decisions presented in Figure 6-7.
Cost Evaluation Approach

Select according to... Short-Term Long-Term Evolving

Short-Term Cost $7.503 B $6.0951 B $6.315 B
Long-Term Cost $7.508 B $6.0950 B $6.316 B
Evolving Cost $7.660 B $6.1590 B $6.309 B

options’ long-term costs or experienced cost evolution. Similar calculations are performed for the

other two decisions and show that the integer linear program and the genetic algorithm solutions

are indeed optimal given their respective search spaces.

Since subsystem costs do not evolve for the first two selection decisions presented in Figure 6-

7, their analysis does not require use of the genetic algorithm. These two decisions are almost

identical, with the exception of the closures for the compact and midsize cars, which swap be-

tween the aluminum and magnesium4 material options. While both combinations clearly enable

the automaker to satisfy its CAFE constraint, magnesium closures in the midsize car are pre-

4Magnesium closures are not a pure magnesium design, but rather a combination of magnesium and aluminum,
because sheet magnesium cannot yet meet the surface finish requirements of a vehicle’s exterior [34].
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ferred over aluminum closures when short-term cost is considered because of the high cost of

magnesium in comparison to the cost of aluminum and therefore, the automakers desire to limit

the number of vehicles that use the more expensive material. In contrast, when only long-term

cost is considered, the cost of magnesium is only slightly greater than that of aluminum in a given

vehicle platform; consequently, the cost the automaker pays to use magnesium on the compact

car, which has the higher annual production volume, is more than offset by the savings it realizes

from switching to aluminum on the midsize car.

The third selection decision presented in Figure 6-7 considers cost evolution due to learning

in the decision-making process and thus requires use of the genetic algorithm to analyze the

problem. Since one of the trade-offs of genetic algorithms is that they cannot guarantee the final

result will be the global optimum, the decisions based on short- and long-term costs from above

are used to seed the genetic algorithm and help it identify a reasonable combination of materials.

The genetic algorithm, however, is also run without the seed chromosomes, should the set of

preferred materials from considering cost evolution be very different from those proposed by the

integer linear program.

As it turns out for the set of inputs, the selection decision made by the genetic algorithm

is nearly identical to those from the integer linear program, the one difference being the use of

the compact car’s closures as a test bed for the introduction of aluminum in the second design

cycle—one design cycle before the CAFE constraint jumps and necessitates the use of any alter-

native materials. All other materials for the bodies and closures are introduced on an as-needed

basis, as determined by the CAFE constraint. The presence of a test bed in the third selection

decision shows that deliberately introducing aluminum in anticipation of using it later enables

the automaker to move down the learning curve and realize savings during the following de-

sign cycles. A comparison of manufacturing costs in the last column of Table 6.6 confirms this

conclusion and indicates that the use of a test bed lowers the automaker’s total cost.

Given that the automaker pays a cost premium to introduce a material on a test bed, but in

exchange realizes cost savings when that material is used again in the future, the automaker’s

return on investment can be calculated for this action. The investment is equivalent to the cost

premium the firm pays to use a test bed in the second design cycle, and likewise, the return is

represented by the savings in the third and fourth design cycles. These quantities are calculated
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Table 6.7: Return on investment for follwing the third selection decisions in Figure 6-7.
Calculated relative to

Short-Term Decision Long-Term Decision

Added Cost (Cycles 1–2) $107.8 M $107.8 M
Savings (Cycles 3–4) $114.4 M $115.5 M
Return on Investment 6.1% 7.1%

for the selection decision made assuming evolving cost, relative to the decisions made using

short- and long-term costs. Numbers are shown in Table 6.7 and represent the cost premium of

the test bed and the amount the firm saved by following the third selection decision in Figure 6-7

instead of the first or second one.

When deciding whether to first implement a particular material on a test bed, an automaker

has to confront the trade-off between minimizing the upfront cost of the test bed versus gaining

sufficient experience to move down the learning curve so it can realize future savings and offset

the test beds cost. On one hand, using products that are manufactured at lower production

volumes leads to lower test bed costs simply because the automaker has to produce fewer units

with a new material. These products, however, are also associated with lower future savings

because the firm gains less experience (as measured by cumulative production volume) than if

it had chosen a higher-volume product. This trade-off is illustrated by the stylized exercise (see

Figure 4-7), but is relevant to the automotive case study.

In the stylized exercise, the lower-volume product is also preferred for a test bed because of

its lower unit cost premium for the alternative material. In contrast, the firm in the automotive

case study does not have the same low-volume versus high-volume choice: all three cars are

manufactured at production volumes of 120,000 units per year or higher. However, the firm does

have a choice of bodies or closures for any of the three cars—and chooses the closures of the

compact car as the test bed for aluminum. Although they are not the cheapest option in terms of

added cost (Figure 6-8), the compact car’s closures have the lowest short-term unit cost premium

and enable the automaker to learn the most about each manufacturing process due to the vehicle

platform’s high annual production volume. The firm’s preference for closures over the body is

also motivated by the assumption that the subsystems are weighted equally in their contributions

to cumulative volume (see Section 6.4); consequently, the automaker gains as much experience

producing aluminum closures as it would producing an aluminum body—but at lower cost. The

113



Added Cost Savings Net Savings
0

20

40

60

80

100

120

T
ot

al
 C

os
ts

 o
r 

S
av

in
gs

 [$
 M

M
]

 

 
Compact Car
Midsize Car
Large Car

Figure 6-8: Costs and savings of using the closures of alternative vehicle platforms as test beds
for aluminum.

preference for the compact car’s closures is confirmed in Figure 6-8, which compares the added

cost of a test bed in the second design cycle to savings from the third and fourth cycles. The same

calculation is performed assuming the automaker chose to introduce aluminum on the midsize

car’s closures or the large car’s closures, in place of the compact car’s closures. Vehicle bodies

are not considered because they only increase test bed cost without providing any additional

benefits.

6.6 Sensitivity Analysis

6.6.1 Test Bed Annual Production Volume

The results from the automotive case study’s analysis indicate that an automaker should use

the highest-volume car as its test bed and should use that test bed for the minimum amount of

time—in this case, one design cycle. These results, however, appear at odds with the conclusions

from the stylized exercise in Chapter 4, which suggest that a manufacturing firm should use the

lower-volume product as its test bed, and do so for as many years as the time frame will allow. In

order to reconcile these observations, a sensitivity analysis that evaluates the impact of changes

to the annual production volume of the product that is selected as the test bed is performed.
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Although a similar analysis was already done for the stylized exercise, the one in this case study

is used to better understand the consequences of changes to the test bed’s volume under more

realistic conditions. Additional goals of the current sensitivity analysis include assessing the

impact of the changes on manufacturing cost and on an automaker’s decision to use a test bed,

as well as evaluating the robustness of the material and application choice for a test bed.

The sensitivity analysis starts by comparing two scenarios or selection decisions—much like

the original approach of the stylized exercise—to gain a clearer understanding of how cost be-

haves with changes in the test bed’s annual production volume. Later, the genetic algorithm is

used to select the material and application for the test bed; for now, the costs of the long-term

and evolving cost selection decisions from Figure 6-7 are evaluated at different volumes of the

compact car. The annual production volume of the compact car is changed only in the first and

second design cycles to avoid affecting the automaker’s CAFE number and therefore material

preferences in the third and fourth cycles. Lower volumes of the compact car will not affect the

automaker’s ability to satisfy CAFE in the first two design cycles: the fuel economy of the com-

pact car is below the CAFE target in those years so decreasing that car’s volume will increase the

automaker’s CAFE number. As in previous analyses, the added cost of using a test bed from the

first two design cycles, future savings from the final two design cycles, and net savings, which

represent the difference between future savings and added cost—or more precisely, the difference

in manufacturing cost between the two selection decisions—are all calculated and plotted.

Analysis results are shown in Figure 6-9. As annual production volume decreases, the addi-

tional cost the automaker pays to learn decreases as well because the new material is applied to

fewer vehicles. Savings also decrease because the lower volumes imply less experience for the

automaker and therefore less cost evolution. These savings depend on the functional form of

the learning curve, as well as the number of vehicles that implement alternative materials whose

costs are affected by the use of a test bed. For instance, the jump in savings at around a test bed

production volume of 50,000 units per year is the result of the curve switching from constant to

log-linear at Vth (see Figure 3-5).

The net savings illustrates the competing effects between the added cost of a test bed and

the savings the automaker realizes later on. As shown in Figure 6-9, net savings is negative at

low volumes, indicating that given a choice, the automaker would not introduce aluminum on
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Figure 6-9: Costs and savings as functions of the annual production volume of compact car
during first and second design cycles.

the compact car’s closures in the second design cycle. As production volume increases, so do

net savings because the automaker is able to move further down the learning curve and increase

savings. There is a limit, however, to the amount of savings an automaker can realize because the

learning curve saturates above Vhi. Once this saturation point is reached, increasing the volume of

the test bed to deliberately gain more experience and move further down the learning curve will

not have a corresponding increase in benefits—only cost—so net savings starts to decrease with

increasing production volume. This point is sensitive to the discount rate, but starts happening

around 120,000 units per year in Figure 6-9.

The results presented in Figure 6-9, when compared with the stylized exercise’s results in

Figure 4-7 appear to validate the initial observation made at the beginning of this section: that

the stylized exercise and the automotive case study are contrary in their suggestions of when

to use a test bed. These results, as it turns out, can be reconciled by taking a closer look at the

unit cost premium (assuming short-term unit cost of the new material) of the test beds in both

cases, shown in Figure 6-10. For the stylized exercise, this unit cost premium decreases with

decreasing annual production volume so the firm will prefer a low-volume product for its test

bed. In contrast, the unit cost premium for aluminum in the automotive case study increases with

decreasing production volume, so at low volumes (below 50,000 units per year), the savings the
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Figure 6-10: Unit cost premium of test beds in the stylized exercise and the automotive case
study.

Table 6.8: Compact closure material choice for test bed given production volume.
Compact Car Volume Test Bed Test Bed No. of Design

[units / yr] Subsystem Material Cycles

20,000 Compact car closures SMC 2
30,000 Compact car closures SMC 1
40,000 Compact car closures SMC 1
50,000+ Compact car closures AL 1

automaker realizes are not enough to offset the added cost of using the test bed. Consequently,

the automaker will avoid using the compact car’s closures as a test bed for aluminum at low

production volumes of the compact car.

While the above sensitivity analysis explains the difference in preference for a low or high

volume test bed between the stylized exercise and the current case study, it does not provide any

insight to the number of years a test bed should be used. This question is answered by repeat-

ing the sensitivity analysis, but instead of comparing two selection decisions, the material and

application used for the test bed are chosen by the genetic algorithm given different production

volumes of the compact car in the first and second design cycles. The results of this analysis are

summarized in Table 6.8.

The compact car’s closures are identified by the genetic algorithm as the preferred subsystem

117



for the test bed, regardless of the car’s production volume. The preferred material, however,

changes so that at 50,000 units per year and above, aluminum is chosen for the test bed, and below

50,000 units per year, SMC is preferred. This is consistent with the materials’ manufacturing costs:

SMC has lower fixed (i.e. tooling) costs and is therefore the cheaper option at low volumes. As

for why SMC, its design contains extruded aluminum parts, from which the automaker can still

gain experience and have that experience count as much as if it were gained from manufacturing

aluminum closures. This result is partly due to the assumption that all subsystems, regardless of

their size or number of parts, are weighted equally when it comes to learning.

At very low production volumes of the compact car (20,000 units per year in the above analy-

sis), a test bed is employed in both the first and second design cycles. The extended use of a test

bed enables the automaker to move further down the learning curve than if it had implemented

a test bed for only one cycle, and indicates that at very low volumes (at least relative to Vth),

future savings can outweigh the costs of gaining additional experience. This result is consistent

with the observation from the stylized exercise that a firm will prefer to use a test bed as long as

its time frame allows. (It should be noted, though, that the stylized exercise marks time in years,

whereas the automotive case study does so in design cycles, each of which equals four years.) At

higher production volumes of the compact car, the use of a test bed is limited to one design cycle

because cumulative volume by the end of that cycle is high enough that the cost of a second cycle

of using the test bed will be greater than the savings the automaker can realize later on. The lack

of additional benefits is partly because the learning curve saturates; this saturation is reflected in

the slowing rise of savings in Figure 6-9.

6.6.2 CAFE Target

The second sensitivity analysis investigates the consequences of changing the CAFE constraint

on the preferred materials and the total manufacturing cost. Rather than changing the constraint

timing, as was done in the sensitivity analysis of the stylized exercise, the automaker’s constraint

space is gradually tightened over time. Gradually tightening the CAFE standard presents a more

interesting problem than simply increasing the constraint from 27.5 mpg to 28.5 mpg because

the automaker is forced to continually readjust in order to accommodate the changing standard.

The larger scope of the current case study also means the automaker will have more flexibility
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Figure 6-11: Preferred materials assuming a linearly increasing CAFE target.

Table 6.9: Total manufacturing cost of selection decisions presented in Figure 6-11
Cost Evaluation Approach

Select according to... Short-Term Long-Term Evolving

Short-Term Cost $9.842 B $6.831 B $7.757 B
Long-Term Cost $9.858 B $6.823 B $7.771 B
Evolving Cost $10.008 B $6.917 B $7.737 B

in choosing how to satisfy the constraint; in contrast, the firm in the stylized case study was

limited to two material options for two products. The goal of this analysis is to assess whether

the consideration of cost evolution will continue to affect the automaker’s material preferences,

as well as lead to its decision to introduce any of the alternative materials on a test bed.

The new constraint space assumes the CAFE target increases linearly from 27.5 to 29.0 mpg

in increments of 0.5 mpg over the four design cycles. The selection models are then run using the

new CAFE targets and the three manufacturing cost calculation approaches; resulting selection

decisions are shown in Figure 6-11, with costs in Table 6.9 and return on investment in Table 6.10.

As expected, the integer linear program results in the first and third design cycles match those

presented in Figure 6-7 since both analyses have the same CAFE targets for their respective
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Table 6.10: Return on investment for following the third selection decisions in Figure 6-11.
Calculated relative to

Short-Term Decision Long-Term Decision

Added Cost (Cycles 1–2) $107.8 M $107.8 M
Savings (Cycles 3–4) $127.9 M $141.5 M
Return on Investment 19% 31%

periods. The manufacturing costs in Table 6.9 confirm that the integer linear program and the

genetic algorithm results are optimal given their respective search spaces; these costs, though,

are higher than those in Table 6.6 because of the tighter constraints.

A comparison of the integer linear program and genetic algorithm selection decisions in

Figure 6-11 shows that accounting for cost evolution in the manufacturing cost calculations has

an impact on the preferred materials. First, the genetic algorithm’s results indicate that it is

financially beneficial for the automaker to use the compact car’s closures as a test bed for the

introduction of aluminum in the second design cycle—same as in the initial analysis (Figure 6-

7). The presence of learning also causes the genetic algorithm to exhibit a strong preference

for aluminum in the bodies and closures of all vehicle platforms during the third design cycle.

This emphasis on one material allows the firm to capitalize on its experience with that material

and thereby reduce overall cost. This is reflected in the firm’s return on investment (Table 6.10),

which is notably higher than in the previous analysis (Table 6.7), because the firm is able to use

aluminum in nearly every subsystem and pay close to long-term cost for each—thereby realizing

a sizeable return for the same investment. In contrast, switching materials between design cycles,

or using different materials within one cycle, leads the firm to pay short-term cost for more of the

subsystems, which in turn increases its total manufacturing cost. Switching materials was less

of a concern in the initial analysis when the CAFE target changed only between the second and

third design cycles and the automaker was not forced to continually readjust its material choices.

6.6.3 Planning for Uncertainty in CAFE

While the above analyses assume the CAFE target is a known quantity for the next 16 years, the

reality is that the target is set for no more than a few years in advance. For instance, NHTSA

only finalized the light-duty vehicle standards for 2012 through 2016 in the beginning of 2010,

while the light truck standards for 2008 through 2011 were set in 2006 [3, 9]. And even then, there
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is the possibility that the standards may change: in 1985, Ford and GM lobbied for—and were

granted—a reduction in the 1986 CAFE target to 26 mpg down from 27.5 mpg [28]. The 2008 to

2011 light truck standards were also found to be “arbitrary and capricious” by the 9th Circuit

Court of Appeals, and were returned to NHTSA for further review [1]. Likewise, the Center for

Biological Diversity also challenged the 2011 passenger car and light truck CAFE standards [4]

for not being set at the “maximum feasible level” [30]. Uncertainty in the CAFE target creates

difficulties for an automaker because it does not know which target to design for. This can lead

the automaker to paying more (or less) than originally anticipated, particularly if it has limited

time to accommodate the new constraint. This section investigates whether the consideration of

cost evolution through learning can help an automaker cope with uncertainty in its constraint

space.

In the analysis, the costs of “what-if” scenarios, in which the automaker plans for a specific

CAFE target in the fourth design cycle, but partway through the third cycle finds out that the

target for the final cycle has been either increased or decreased, are evaluated. Because the

automaker is only alerted to the change in the third design cycle, only the preferred materials

in the final cycle are affected. The scenarios’ costs are then compared to the cost the automaker

would have paid if it had planned for the revised CAFE target in the first place.

The first scenario asks “what if” the CAFE constraint is relaxed after the automaker has

planned to meet an original, tighter constraint. For the original constraint, the CAFE target

increases linearly from 27.5 to 29.0 mpg by the end of the time frame. The automaker therefore

plans to use the materials from the “evolving cost” selection decision in Figure 6-11. At some

point, however, the automaker learns the constraint for the final four years of its time frame

has been relaxed by 0.5 mpg so the targets over the time frame progress as follows: 27.5, 28.0,

28.5, and 28.5 mpg. Consequently, the automaker has the option to lower its costs by choosing a

new set of materials for the fourth design cycle, given the new target. Optimizing for the fourth

design cycle assuming the automaker has already chosen and implemented materials during the

first three cycles, yields the selection decision in Figure 6-12, which has a manufacturing cost of

$6.453 billion (calculated assuming costs evolve).

The next step is to compare the above cost to the cost the automaker would have paid had

it planned ahead for the 28.5-mpg target in the fourth design cycle. Figure 6-13 shows the
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Figure 6-12: Preferred materials under relaxed constraint.
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preferred materials under the modified CAFE targets given all three approaches to calculating

manufacturing cost; the cost of each selection decision as evaluated with cost evolution is shown

beside each selection decision. The costs of the integer linear program decisions represent the cost

to the automaker if it had not considered learning when selecting materials, but costs evolved

regardless. A comparison of the numbers in Figure 6-13 and the cost of the decision in Figure 6-12

reveals that, given the inputs for this case study, planning for a 29.0-mpg target but making a last-

minute switch to 28.5-mpg has a minimal impact on the automaker’s cost—$6.453 billion versus

$6.450 billion. In fact, the decision in Figure 6-12 has a lower cost than the integer linear program

results in Figure 6-13 because it emphasizes materials the automaker has already worked with.

The reverse scenario, in which the CAFE constraint is tightened, can be evaluated using

a similar approach. In this case, the automaker plans for a 28.5-mpg target in the final two

design cycles, but is instead forced to accommodate a 29.0-mpg target in the final four years.

The resulting selection decision is shown in Figure 6-14 and has a manufacturing cost of $7.751

billion (again, assuming costs evolve). The first three design cycles of this decision are the same

as those in the genetic algorithm’s solution in Figure 6-13; the materials selected for the fourth

cycle, however, have been altered in response to the higher CAFE target. If the automaker were,

instead, to have originally planned for the increased target in the fourth design cycle, it would

have arrived at the results in Figure 6-11 and Table 6.9. Comparing these numbers indicates that

by considering learning when selecting materials, the automaker is able to reduce its costs. It still pays $14

million ($7.751 billion versus $7.737 billion) more than if it had planned for the higher target in

the first place, but the total amount is still less than if it did not consider learning in the selection

process ($7.751 billion versus $7.757 billion or $7.771 billion, according to Table 6.9).

The above analysis concerning uncertainty in the CAFE constraint suggests that the firm can
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lower its costs by accounting for learning in the materials selection process. The firm is also

better off planning for a tighter constraint when considering cost evolution: even if the con-

straint changes to become less binding, the automaker can still choose materials it has experience

in manufacturing and thereby keep the additional cost of modifying its production plans to a

minimum (in this case, $3 million). On the other hand, if the automaker does not plan for the

tighter constraint, there is the possibility its modified plans will include the use of an unfamiliar

material and limit its ability to capitalize on its experience from the previous design cycles. In

the above analysis, tightening the constraint costs the automaker an additional $14 million. Not

considering cost evolution will also lead to higher costs for similar reasons: new or unfamiliar

materials are selected, for which the automaker will have to pay higher costs without receiving

any benefit. Therefore, considering cost evolution, as well as planning for tighter constraints, can

help an automaker better cope with uncertainty in its constraint space.

6.7 Summary

The purpose of the automotive case study was, first, to illustrate the application of the proposed

multi-product selection framework to a larger-scale problem; second, to further explore the con-

sequences of considering cost evolution on a firm’s preferred materials; and finally, to identify

potential strategies the firm could adopt when introducing new materials. To perform the desired

analyses, the proposed framework was tailored to analyze an automaker’s selection problem and

to calculate the total manufacturing cost of its vehicle fleet. Cost was used in place of profit, not

only because calculating net revenue requires additional information, but also because of the

presence of the CAFE constraint.

The case study’s results show that the consideration of cost evolution can affect an au-

tomaker’s preferred materials and point towards strategies the automaker can adopt when intro-

ducing the new materials to its fleet. One of these strategies is the use of a test bed, which the

automaker can employ to gain experience with unfamiliar materials before a widespread appli-

cation of those materials throughout its fleet. Although the stylized exercise already indicated

that, under certain conditions, using a test bed is financially beneficial to a firm, the exercise’s

observations were incomplete due to its limited scope. This limited scope is addressed with the

automotive case study, which was designed to provide a more realistic example for the appli-
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cation of the multi-product selection framework. Despite its larger scale, the automotive case

study’s results suggest that the use of a test bed continues to be favored, even at larger annual

production volumes. As long as the automaker has a means to reduce the upfront cost of a test

bed or increase any future savings it will realize, it will choose to use a test bed.

The consideration of cost evolution from learning also encourages a firm to become comfort-

able working with one material and use that material as often as the constraint space will allow.

This is best illustrated with analysis concerning the linearly increasing CAFE target: both integer

linear program solutions, which do not account for learning, select a mix of materials, whereas

the genetic algorithm solution emphasizes the use of aluminum in both bodies and closures. Fi-

nally, the results of the sensitivity analysis suggest that, when selecting materials, an automaker

should plan for tighter constraints as a means of coping with uncertainty in the constraint space.

By aiming high, the automaker avoids being “side-tracked” by materials it may not be able to use

for more than one design cycle and is easily able to adjust should the constraint be relaxed. On

the other hand, planning for a lower constraint can have a larger impact on the automaker’s man-

ufacturing cost, especially if the constraint tightens and the automaker is forced to manufacture

its vehicles with unfamiliar materials in order to satisfy the tighter constraint.

It should be noted that the above conclusions are drawn despite the knowledge that a genetic

algorithm does not necessarily identify the best selection decision—merely a satisfactory one.

However, that satisfactory decision is clearly still good enough in that its total manufacturing

cost is lower than those of decisions resulting from the integer linear program, assuming cost

evolution due to learning takes place.

125



126



Chapter 7

Conclusions

7.1 Summary

Selecting materials for use in a product is an important component of the development process

because poor choices can negatively impact the product’s market share or profitability. Iden-

tifying satisfactory materials, though, is a complex process: often, a firm or product designer

has many options to choose among and has to make selections among competing criteria. In

response to this problem, a large number of methods have been developed to inform a firm’s

selection decision. These methods, however, contain assumptions in order to make the selection

process more manageable. Such assumptions include

v Material properties are invariant over the decision’s time horizon

v Materials for a product or application are selected independently of other products or

applications

v The implementation strategy a firm uses to introduce a new material to its products is

independent of that material and its properties.

While these assumptions are true in most cases, there are occasionally conditions under which

they do not hold.

One such instance is when emergent properties are key selection criteria. These properties

are, by definition, context-dependent and likely are not time-invariant over the decision’s time

horizon: as the context evolves, whether driven by changes in operational conditions, market
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conditions, consumer preferences, or for other reasons, so too do these properties. A product’s

manufacturing cost is a prime example of an emergent property—and one that factors into almost

every materials selection decision. Evolution in manufacturing cost can be driven by external

factors such as changes in raw material prices, interest rates, the job market, and so forth, or by

internal factors in which a firm continually improves its manufacturing processes and product

designs. This study focuses on the internal causes of cost evolution, specifically on “learning by

doing” as the driver of changes in cost. According to the theory of learning, firms gain experience

through repetition and are able to improve their manufacturing processes or product designs and

thereby reduce their costs. This is particularly true for new or unfamiliar materials, which firms

have minimal experience working with, but are often forced to consider in the materials selection

process. Since learning happens internally, a firm can control its own learning process and can

choose to deliberately gain experience and apply that knowledge to improving its product’s

design or its manufacturing processes.

Through learning, the manufacturing cost of a product can evolve over the firm’s time hori-

zon. For firms that manufacture several similar products, however, it is likely that experience

transfer can take place among products that share a common resource—such as a manufacturing

process line for a specific material. As the firm gains experience and improves its facility with

that resource, all products that rely on it benefit and contribute to its cumulative production

volume. In this way, shared learning takes place among products and selection decisions made

for one product can affect future decisions for others. Considering learning can also influence a

firm’s decision to adopt a new material and on which product. For instance, the firm may choose

to introduce a material first on a test bed before adopting it on the remainder of its products; this

decision, though, will depend on that material’s manufacturing cost and whether it is expected

to evolve and to what extent. This research, therefore, incorporates manufacturing cost evolution

through learning into the materials selection process in order to evaluate its impact on a firm’s

preferred materials and to identify strategies the firm can adopt to introduce those materials to

its products.

The first part of this investigation focused on incorporating learning into a traditional, single-

product selection method. A case study for the body-in-white of a midsize car was used to

illustrate the application of the modified selection method. The study’s results indicated that,
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while cost evolution affected the ordering of material options, it only rarely suggested alterna-

tives that a purely static analysis would not have also chosen. It was recognized, however, that

restricting a selection method’s scope to a single product—as is the case of traditional methods

and the body-in-white case study—limited the method’s usefulness in accurately accounting for

the impact of learning on a firm’s selection decision, particularly when learning can be shared

among multiple products.

Therefore, the selection problem scope was expanded in the second part of this research to

include multiple products and account for a firm’s materials choices over its time horizon. A

stylized exercise was first used to motivate the need for multiple products and demonstrate how

shared learning can lead to lower manufacturing costs through the use of a test bed. In this

exercise, the total manufacturing cost was calculated for two scenarios, but only one of which

uses a test bed to introduce the alternative material. Learning was shared between both products

by assuming that the firm gained experience working with the alternative material regardless of

which product implemented that material. The exercise’s results suggested that shared learning

can lead to the use of a test bed—and indeed, is a necessary assumption if the test bed is to lower

the firm’s total manufacturing cost. The results also showed that the firm’s decision to introduce

the alternative material on a test bed depended on the production volume of the product used

as a test bed, the alternative material’s cost relative to that of the baseline material, and the

total volume of products that ultimately use the alternative material, among other factors (e.g.

discount rate).

Once it was shown that the consideration of shared learning could reduce manufacturing

cost through the use of a test bed for introducing new materials, a more formal multi-product,

multi-period materials selection framework was developed. This revised framework expanded

the scope of the selection problem with the objective of finding the combination of materials and

products that minimizes a firm’s total manufacturing cost over a specified time horizon; shared

learning is accounted for in the manufacturing cost calculation. The selection framework relied

on a combination of an integer linear program and a genetic algorithm to optimize manufacturing

cost. The former found a feasible solution in the absence of learning (which involves non-linear

calculations, owing to its use of cumulative production volume to predict evolving cost), and the

latter optimized that solution assuming costs evolved.
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The selection framework was then applied to two case studies, the first of which revisited the

stylized exercise from before in order to validate the expanded selection approach. The second

case study posed a more realistic selection problem in the context of an automaker seeking to

improve the fuel economy of its vehicles through use of alternative lightweight materials. Results

from the automotive case study showed that, while the consideration of cost evolution did not al-

ways alter an automaker’s material preferences, it could still impact when the automaker decided

to introduce a new material to its products. Specifically, the results indicated that accounting for

shared learning led the automaker to introduce aluminum on the closures of its compact car a

full design cycle before constraints necessitated the use of any alternative material in the fleet (see

Figure 6-7). This use of the compact car’s closures as a test bed, in turn, allowed the automaker

to deliberately gain experience and reduce its overall manufacturing cost. A test bed, though,

was not the only strategy for introducing new materials suggested by the case study’s results: in

the sensitivity analysis, it was shown that the automaker could emphasize the use of a particular

material across different applications to reduce its costs, or plan for tighter design constraints as

a means to cope with uncertainty in the constraint space.

7.2 Future Work

7.2.1 Risk and Uncertainty

There are several factors which the analyses in this study do not consider but may matter to

the decision-maker. Risk and uncertainty are two such factors. Often, a firm is reluctant to

change a product’s materials because with the new materials come the risks of development

delays, supply chain or manufacturing problems, consumer rejection, and so forth. Therefore,

unless there is a compelling reason to switch materials (e.g. the new material lowers costs, meets

tighter performance requirements, enables the firm to satisfy government regulations, matches

consumer preferences, etc.), the firm will prefer to continue using its current materials because it

knows they work. The presence of risk is also a reason why firms prefer lower-volume products

as a test beds: it enables them to minimize the downside should there be manufacturing or other

problems, or should consumers not accept the modified product.

Even when the firm decides it needs to consider alternative materials for its products and
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thus gather information to inform its selection decision, it still faces uncertainty in material

properties and constraints used in the selection process. Some of these uncertainties can be

removed (for example, contracts with suppliers to lock-in raw material prices), but others, such

as the rate or scope of learning, manufacturing process cycle time, and so forth, will remain. If

these uncertainties—and the risk a firm takes when using a new material—are to be considered

in the materials selection process, selection framework will have to be modified in order to

account for these factors, and additional sensitivity analyses run to assess when variations in

input parameters will impact the preferred materials.

7.2.2 Net Revenue

The analyses conducted in this study optimized for cost rather than net revenue. For a single-

product analysis in which the firm is a price taker, the two metrics are equivalent. This was

also the case for the multi-product analysis because of CAFE regulations combined with other

assumptions. In the more general case, however, there are situations in which optimizing for

net revenue will lead to different results compared with optimizing for cost—for instance, when

several products are involved or when the firm can set product prices. As a case in point,

improving a product by implementing a new material will affect that product’s revenue according

to how many consumers are willing to purchase that improved product and the extent to which

the firm changes its profit margin and production volume. The revenue of other products can

also be affected if consumers who would have purchased those products instead opt to buy the

improved product. Therefore, calculating revenue change will require product profit margins,

price elasticities of demand, and consumer willingness to pay for various improvements.

Including these parameters in the analysis can also affect a firm’s choice of a product for a

test bed (as well as its preferred materials). For example, using a product with low price elasticity

for a test bed can help a firm recover the cost premium it pays to implement a test bed in the

first place because the firm would be able to increase that product’s price with minimal losses

in demand; this is discussed in more detail in Section 4.3.3. Accounting for revenue through the

use of price elasticity and other parameters in the multi-product materials selection framework,

however, results in a more complex analysis. As is, the search space is already quite large,

even when limited to the selection of materials for a set of products over a given time horizon;
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permitting the annual production volume and the prices or profit margins of those products to

vary on top of this will only widen the search space and make optimization that much more

difficult.

There is a possible way, though, to still account for revenue, but simplify the analysis so it

fits within the proposed selection framework: through the use of volume-neutral price. Volume-

neutral price represents how much a firm can increase the price of an improved product, and

still sell the same volume of that product as it did before the product was improved. Its cal-

culation reflects how much a consumer is willing to pay for that particular improvement in the

product. This willingness to pay, in turn, is calculated based on the product’s price elasticity of

demand—so how much its demand will decrease in response to an increase in its price—and

its elasticity of demand with respect to the improved attribute—so how much its demand will

increase in response to the improvement in that attribute. These attributes can include product

weight or performance, such as the acceleration time or fuel economy of a vehicle. By relying

on volume-neutral price instead of price elasticities or profit margins to calculate revenue, the

selection framework can make the assumption that the annual production volumes of products

in the analysis do not change—by definition, this is the case for volume-neutral price—and thus

simplify the optimization process. Appendix A demonstrates a possible approach for incorpo-

rating volume-neutral price—or more precisely, consumer willingness to pay—into the materials

selection framework and accounting for incremental revenue, as well as cost, in the selection

process.

7.2.3 Automotive Case Study Limitations

Much can also be done to improve the multi-product automotive case study. In particular, this

case study makes several assumptions to simplify the problem. These assumptions, though,

are not necessarily representative of manufacturing practices within the automotive industry

and at the very least should be investigated to determine whether changing them will have

any bearing on an automaker’s material preferences. For one, the case study assumes that the

design cycles of all vehicle platforms begin and end at the same time. The reality is that an

automaker does not have the resources to redesign all vehicle platforms simultaneously, although

one can argue that the other vehicle platforms encompassed within the remainder of the fleet are
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on different cycles. Staggering platform redesigns will affect not only the cost of each vehicle

(through discounting), but also the experience an automaker has gained by the manufacturing

start date. Additionally, the model ignores design refreshes, which occur between redesigns and

in which automakers make small modifications to a vehicle. This assumption is valid when

the automaker’s options are limited to alternative materials, which usually require significant

changes to the vehicle’s design and are therefore only implemented during redesigns. Other

technology options, however, may be simple enough to be implemented during design refreshes

and thus necessitate the consideration of more frequent modifications to the vehicle’s design—

especially if the automaker is facing a rapidly increasing CAFE target.

Also in question is the freedom the model gives the automaker to switch materials with-

out any adverse consequences other than the potential lack of experience with new materials.

As a result, the proposed selection decisions freely jump between materials, even within a sin-

gle application—for example, the bodies of the compact and midsize cars in Figure 6-11 use a

different material in each design cycle. One possible fix to the selection method is to add the

assumption that once an alternative material is implemented, the automaker cannot switch it out

and has to use it for the remainder of the time frame. Or alternatively, the model could limit the

number of times the automaker can switch the material of each subsystem. This approach may

work best if more subsystems or other applications are included in the problem; too few options,

such as in the above case study, would limit the manufacturer’s flexibility and force it to design to

the highest CAFE standard. Another option is to include the investment the automaker makes in

designing and engineering vehicles with new materials in the selection method’s objective func-

tion so that each time the automaker has to redesign a subsystem from a new material, it pays an

additional price. Learning can also take place in this investment cost so that the more times an

automaker designs, for example, an aluminum body for any of the vehicles, the lower that body’s

engineering cost. This consideration of learning in engineering cost would also discourage the

selection model from switching materials every design cycle.

Another assumption that may have to be altered is the genetic algorithm’s approach to calcu-

lating a material’s cumulative production volume. In learning theory, cumulative volume is used

as a proxy for a firm’s experience. The model implemented for the preceding analysis assumes

that each vehicle body or closure set the automaker manufactures adds one unit to the cumula-
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tive volume of each of the materials that compose the subsystem. Consequently, an automaker

gains the same amount of experience from a closure set with three aluminum reinforcements as

from an entire aluminum body. This leads the model not only to favor closures for the test bed,

but also to choose designs like SMC just because they contain those few aluminum parts (see

Table 6.8). One way to correct for this would be to weight the learning function according to the

number of individual parts manufactured from a specific material (and manufacturing process)

within each subsystem. In doing so, the model would be able to more accurately represent the

experience gained by producing an aluminum body versus aluminum closures.

7.2.4 Potential Analyses with the Automotive Case Study

The analyses in this study focused on the consequences of considering cost evolution in materi-

als selection within the automotive industry and identified strategies an automaker could adopt

when introducing new materials to its vehicles. The proposed selection framework, however,

can be used to conduct other automotive-related analyses concerning learning and materials—or

more generally, technology—selection. All the case studies presented in this thesis assumed the

impact of learning is limited to a product’s manufacturing cost. In reality, there are likely other

aspects of the product development process in which a firm can learn—for instance, learning in

product engineering. Learning is also not limited to cost: a product’s performance or energy

efficiency can also improve as the firm gains experience. And in some cases, performance im-

provements can translate to higher revenue for the firm if consumers are willing to pay for those

improvements; if the firm’s selection metric is based on net revenue, these improvements can

potentially affect the preferred materials.

Future analyses can also compare other technologies that improve a vehicle’s fuel economy

to the alternative lightweight materials that were investigated in this study. Often, lightweight

materials are perceived to be an enabling technology in that they are not used to directly improve

fuel economy, but rather to compensate for additional mass from other technologies (e.g. hybrid

powertrains) that are used to improve fuel economy. The multi-product selection framework can

be tailored to evaluate this use of lightweight materials in vehicles.

In the end, the selection methods proposed in this study are not designed to select the best

option for the firm, but rather to inform the selection decision and aid the firm by providing a
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means to systematically evaluate its material options. Since the results are context-dependent, the

firm is responsible for defining the input parameters and ultimately making the final decision,

which may or may not coincide with what the methods suggest to be the preferred materials.
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Appendix A

Profit-Based Materials Selection

The selection methods presented in the main body of this thesis are designed to identify materials

that enable a firm to satisfy design criteria at minimal manufacturing cost. While manufacturing

cost is a suitable metric for materials selection, it is not necessarily the economically accurate one

because firms are more likely to base their decisions on profitability rather than on cost alone.

Optimizing a product’s profit, however, requires more complex calculations than optimizing its

manufacturing cost because profit is a function of both manufacturing cost as well as revenue the

firm earns from selling that product.

Both cost and revenue, in turn, depend respectively on the production and sales volume of

the product. Although unit manufacturing cost typically decreases with production volume (see

Figures 3-4 and 4-4) because fixed costs are distributed over more units, total manufacturing

cost will always increase with production volume because of the added variable cost required

to produce the marginal unit. Revenue, on the other hand, is not guaranteed to always increase

with sales volume. If a firm wishes to raise a product’s price, it will likely have to expect that

it will sell fewer units, since demand typically falls with a rise in price. This is captured by the

equation:

EP ≡
∆Q/Q
∆P/P

⇒ ∆P =
1

EP
· P ∆Q

Q

where EP is the price elasticity of demand, and P and Q represent price and demand, respectively.

With very few exceptions, EP < 0, so if the firm changes its demand by ∆Q, its change in revenue,

∆P, will have the opposite sign. Whether revenue increases or decreases, though, will depend
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on how responsive consumer demand is to changes in that product’s price, which is captured by

the price elasticity of demand for that product. If demand is relatively inelastic (|EP| < 1), the

firm will likely be able to realize an increase in revenue because it can manufacture slightly fewer

units, but sell each one for a higher price. In contrast, if demand is relatively elastic (|EP| > 1),

increasing product price will have a large impact on the number of units the firm can sell and

may reduce overall revenue (and profit).

Consequently, identifying materials that optimize a firm’s profit while still satisfying design

constraints is not as simple as identifying ones that optimize the firm’s manufacturing cost. The

calculations become even more complex when the scope of the materials selection problem is

expanded to include multiple products, particularly if the cross-price elasticities of demand are

non-zero for the different products. In such cases, changes in the price of one product will affect

the demand of other products.

A.1 Volume-Neutral Price

Nonetheless, profit-based analyses are still feasible within the materials selection frameworks

presented in this thesis, albeit with some simplifying assumptions. This appendix illustrates one

approach to conducting a profit-based analysis, specifically through the use of volume-neutral

price to calculate a firm’s revenue. The volume-neutral price of a product represents consumer

willingness to pay for improvements to one or more of that product’s attributes and thus, the ex-

tent to which a firm can alter the improved product’s price without affecting that product’s sales

volume. Changes to both a product’s attributes and its price are necessary to maintain a constant

sales volume: unless consumers are completely indifferent to these changes (e.g. demand is per-

fectly inelastic), either alone will lead to higher or lower sales for the firm. In this study, product

attributes are improved by the use of alternative materials. Although the exact nature of the

improvement will be case-specific, the alternative materials, because of their different properties,

will enable product performance the current material cannot. Ideally this performance will be

valued by consumers, who are willing to pay for it; the firm captures this consumer value by

raising product price and thus increasing its revenue—but not its sales volume.

A product’s volume-neutral price depends on the changes the firm makes to one or more of

that product’s attributes, the elasticity of demand for those attributes, and the price elasticity of
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demand for that product. To begin with, the change in demand, ∆QA, resulting from a change

in an attribute, ∆A, can be calculated from the definition of that attribute’s elasticity of demand,

EA:

EA ≡
∆QA/Qo

∆A/Ao
⇒ ∆QA = EA ·Qo

∆A
Ao

(A.1)

Since ultimately, the firm does not want the product’s volume to change, it will want to change

the product’s price so that the demand will change by −∆QA. Again, this change in price, ∆P,

can be calculated using the product’s price elasticity of demand, EP:

∆P =
1

EP
· Po
−∆QA

Qo
(A.2)

Volume-neutral price is therefore the initial price, Po, plus the change in price from Equa-

tion (A.2). Substituting both Equation (A.1) and (A.2) to calculate ∆P yields the volume-neutral

price in terms of the elasticities of demand, the change in attribute A, and the initial values of

the product’s attribute and price:

VNP = Po + ∆P

= Po +
1

EP
· Po
−∆QA

Qo

= Po −
(

1
EP
· Po

1
Qo

)
·
(

EA ·Qo
∆A
Ao

)
= Po −

EA

EP
· ∆A

Ao
Po (A.3)

Consumer willingness to pay can also be calculated from the quantities above, either per

unit improvement of the attribute, ∆P/∆A, or in absolute terms, ∆P. The initial price of the

product and value of the attribute, as well as the change in the attribute are all set by the firm;

elasticities of demand can be estimated through market research, either using a market model

or by other means. Equation (A.3) is then used to predict the change in revenue associated with

using an alternative material in a product. This change in revenue is then incorporated into the

selection model, along with manufacturing cost, to calculate profit. For simplicity, sales volume

(revenue) is assumed to be equal to production volume (manufacturing cost) so that all products

the manufacturers are eventually sold.

The following sections demonstrate the incorporation of volume-neutral price into both the
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single-product and the multi-product materials selection frameworks that were originally de-

signed for optimizing manufacturing cost. For the single product framework from Chapter 3, the

metric is changed to account for profit, represented by the incremental revenue a firm can realize

by increasing a product’s price to its volume-neutral price less that product’s manufacturing cost;

the material options are then ranked according to this new metric. Similar actions are taken with

the multi-product selection framework so that its metric accounts for the incremental revenue of

each product included in the selection problem’s scope. In both cases, cost evolution through

learning is still considered in the manufacturing cost calculations. Both selection methods are

illustrated with their respective automotive case studies. Volume-neutral pricing is applicable to

vehicles because each alternative material option reduces a vehicle’s weight and thereby improves

its fuel economy—something consumers are willing to pay for. Likewise, volume-neutral pricing

is particularly useful to automakers because it allows the firms to modify their products and

reap benefits through changes in price, but avoid altering production volumes or product-plant

allocation, time-consuming and costly tasks.

A.2 Profit in Single-Product Selection

The single product case study from Chapter 3 is revisited to demonstrate the selection frame-

work’s adaptability to optimizing for profit in place of manufacturing cost. In this particular

instance, the change to the methodology is straightforward: materials for the midsize body-in-

white are ranked to maximize the automaker’s profit rather than to minimize its manufacturing

cost. Profit, in turn, is represented by the incremental revenue (∆P) associated with each material

option less that option’s manufacturing cost; Po from Equation (A.3) is not used because it is the

same regardless of material and therefore will not influence the preferred option.

The same manufacturing costs as those calculated for the original case study are used in this

analysis; this leaves incremental revenue, which is based on the volume-neutral price of each

material option—or more precisely, consumer willingness to pay (∆P/∆A) for an improvement

in a vehicle attribute because Po is not included in the calculations. Since the use of any alterna-

tive material reduces the weight of the midsize car’s body-in-white relative to its weight when

manufactured from mild steel, the material’s volume-neutral price is calculated for fuel econ-

omy improvement and thus represents the amount consumers are willing to pay for higher fuel
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Table A.1: Weight savings, fuel economy improvements, and incremental revenue for each mate-
rial option for the midsize body.

Weight Weight Savings FC Improvement FE Improvement Incr. Revenue
Strategy ID [kg] [∆kg] [∆L/100km] [∆mpg] [∆$]

MS 322 0 0.0 0.0 $0
HSS 243 79 −0.274 0.84 $79
AL 193 129 −0.445 1.38 $132
GF 219 103 −0.356 1.10 $104
CF 138 184 −0.637 2.03 $193

economy.

A.2.1 Calculating Profit

Calculating the incremental revenue of each material option based on the volume-neutral price

first requires a knowledge of the extent to which each option impacts fuel economy, as well

as of the demand elasticities of the product—in this case, a typical midsize car. The former

can be estimated from the difference in weight between an alternative body design and a body

formed from mild steel, and then translated to fuel economy improvement, either through use

of a powertrain model or by relying on the 5%–10% rule of thumb. This example assumes a 6%

improvement in fuel consumption for every 10% reduction in weight—same as for the vehicles

in the multi-product case study (see Table 6.1). Table A.1 lists weight savings and changes in fuel

consumption and in fuel economy associated with each alternative material for the midsize car’s

body; calculations assume an initial curb weight of 1,549 kg and an initial fuel economy of 26.36

mpg (or 8.92 L/100 km).

The elasticities of demand for a representative midsize car are estimated with a proprietary

market model. This model predicts the change in the fractional market share of a particular vehi-

cle nameplate (e.g. a Volkswagen Beetle), given an absolute or percentage change in that vehicle’s

attributes. It is therefore used to obtain changes in market share as a function of the vehicle’s

fuel economy and price; an example of the results is shown in Figure A-1. This relationship, in

turn, is used to calculate consumer willingness to pay and—if Po were known—volume-neutral

price. Assuming that fuel economy and price are independent variables, the change in market
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Figure A-1: Example market model results.

share as a linear function of changes in these variables can be written as

∆MktSh = mFE∆FE + mP∆P

where mFE and mP represent the slopes in Figure A-1 or change in market share (∆MktSh) per

change in fuel economy (∆FE) or change in price (∆P). These slopes are related to their respective

elasticities of demand, but are not the same because they account for absolute changes in fuel

economy and price, and not percent changes (as is the case for elasticity). Consumer willingness

to pay is therefore the change in price at which, given a change in fuel economy, the change in

market share is zero:

∆MktSh = 0 ⇒ ∆PWTP = −mFE

mP
∆FE

Calculating this for a typical midsize car yields a consumer willingness to pay of around $95 for a

one-mpg increase in fuel economy1. This translates to an incremental revenue for the automaker

between $0 and $193 for each of the body designs (Table A.1). These results are then factored

into the profit metric for the single-product selection analysis.

A.2.2 Ranking Results

Table A.2 presents the results of the incremental revenue minus manufacturing cost associated

with each material option. Metric values are based on the manufacturing costs from Table 3.5;

1Based on data collected during the spring of 2009
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Table A.2: High volume unit profit (incremental revenue less unit manufacturing cost) of the
midsize body-in-white.

Mfg Cost Calculation Approach

Strategy ID Short-Term Long-Term Average

MS −$868 −$868 −$868
HSS −$1,061 −$947 −$988
AL −$1,949 −$1,325 −$1,673
GF −$1,786 −$1,219 −$1,585
CF −$4,196 −$2,002 −$3,664

Table A.3: Ranking of material options according to high volume unit profit.
Rank Short-Term Long-Term Average

1 MS MS MS
2 HSS HSS HSS
3 GF GF GF
4 AL AL AL
5 CF CF CF

ordering of preferred materials according to profit is shown in Table A.3. From the negative

numbers in Table A.2 and the resulting material order, it is clear that the incremental revenue

alone is not enough to offset the added cost of using any of the alternative materials: mild steel

is consistently favored regardless of cost calculation method. The results therefore indicate that,

for this particular vehicle and context, consumer willingness to pay is not sufficient to affect

the ordering of the material options. Nonetheless, the modified case study serves to illustrate

one possible approach—the use of volume-neutral price and consumer willingness to pay—for

selecting materials according to firm profitability rather than according to manufacturing cost.

A.3 Profit in Multi-Product Selection

The use of consumer willingness to pay in calculating an automaker’s incremental revenue can

also be incorporated into the multi-product, multi-period case study from Chapter 6. As with

the midsize body-in-white case study, the decision metric is revised to account for profit—

incremental revenue minus manufacturing cost—over the automaker’s time horizon; only this

time, incremental revenue is calculated for each of the subsystems within each vehicle platform.

Since the platforms have different attributes and are targeted at different market segments, con-
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Table A.4: Consumer willingness to pay (WTP) and incremental revenue for case study vehicle
platforms and respective subsystems.

Platform Compact Car Midsize Car Large Car

Initial FE [mpg] 26.99 26.36 23.31
WTP [∆$ / mpg] $77 $95 $233

Incremental Revenue: Body-in-White Material Options
MS $0 $0 $0

HSS $72 $80 $171
AL $118 $132 $279
GF $93 $104 $221
CF $173 $193 $408

Incremental Revenue: Closures Material Options
MS $0 $0 $0

HSS $5 $6 $13
AL $25 $29 $65

MG $28 $33 $74
SMC $12 $14 $31

sumers within each of these segments will respond differently to changes in fuel economy and

price, and therefore be willing to pay different amounts for an increase in fuel economy. The

market model is consequently needed to evaluate consumer willingness to pay for each vehicle

platform within this case study.

Table A.4 shows consumer willingness to pay, as estimated by the market model, for a one-

mpg fuel economy improvement in representative vehicle platforms. The calculations used to

generate these revenue estimates assume negligible cross-elasticities of products. The estimates

illustrate how product-specific the results can be. Incremental revenue associated with each

subsystem is also shown in Table A.4; these numbers are used by the multi-product selection

framework to calculate the profit.

In order to estimate the total profit of the fleet, both the integer linear program and the

genetic algorithm are modified to maximize the automaker’s profit rather than minimize its total

manufacturing cost. For simplicity, sales volume is assumed to equal production volume so the

automaker sells every car it produces. The same CAFE targets as in Table 6.5 and other inputs

from Section 6.3 are used in this analysis.

Preferred materials are shown in Figure A-2, with respective profits in Table A.5. Profits are

calculated using the same three cost calculation approaches used in the original presentation of

this case study; highlighted material options indicate the difference between the three calculation
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Figure A-2: Preferred materials according to profit given each approach to calculating manufac-
turing cost.

Table A.5: Profit of selection decisions presented in Figure A-2.
Cost Evaluation Approach

Select according to... Short-Term Long-Term Evolving

Short-Term Cost -$7.142 B -$5.734 B -$5.954 B
Long-Term Cost -$7.343 B -$5.732 B -$6.135 B
Evolving Cost -$7.351 B -$5.777 B -$5.913 B
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approaches. A comparison of Figures 6-7 and A-2 indicates that optimizing total profit can lead

to different preferred materials compared to optimizing total manufacturing cost. One of the

key changes is the use of high-strength steel in place of mild steel, even when the former is not

necessitated by CAFE. This is because the incremental revenue due to consumer willingness to

pay more than compensates for the additional cost of using high-strength steel; consequently,

high-strength steel is preferred over mild steel for the body of the large car and the closures of all

three vehicle platforms. Mild steel, though, is still preferred for the compact and midsize bodies

because consumers who purchase their respective cars are not as willing to pay for improvements

in fuel economy as consumers who purchase large cars.

Beyond the use of high-strength steel in the first and second design cycles, the short-term

cost (i.e. top) selection decision in Figure A-2 does not differ from the one in Figure 6-7. The

long-term decision, however, indicates a preference for aluminum over high-strength steel for

the large car’s body. The cost of this material—in comparison to that of high-strength steel—is

offset, not only by the high consumer willingness to pay for the large car, but also by its higher

fuel economy improvement which enables the automaker to choose less expensive materials for

the compact car. Specifically, glass fiber composite and aluminum are, respectively, selected for

the compact car’s body and closures when profit is considered (Figure A-2), whereas aluminum

and magnesium—both more expensive, but associated with greater impact on the vehicle’s fuel

economy—are selected for those same parts when only cost matters (Figure 6-7).

The original formulation of the case study in Chapter 6 showed that the consideration of

cost evolution in the selection process can lead to the use of a car’s closures as a test bed for

aluminum. This still holds true when profit is substituted for the metric—only this time, the

closures for the large car are chosen in place of those for the compact car. The choice of the large

car as the test bed is, again, due to the higher willingness to pay for fuel economy of consumers

who purchase that car: this willingness to pay enables the firm to offset some of the added cost

of using the closures a test bed. Consumer willingness to pay, combined with the lowered cost

of aluminum due to the use of a test bed, also leads the automaker to select aluminum for the

large car’s body in the third and fourth design cycles. This use of aluminum in turn enables the

automaker to “downgrade” from magnesium closures in the compact and large cars (Figure 6-7)

to the less expensive high-strength steel and aluminum closures, respectively.
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In conclusion, the above analysis shows that accounting for revenue—specifically, incremen-

tal revenue due to consumer willingness to pay for the fuel economy improvements associated

with the use of alternative, lightweight materials in vehicle design—is feasible within the multi-

product, multi-period materials selection framework. The results from Figure A-2 indicate that,

when optimizing for profit, the automaker continues to use a test bed to deliberately learn

and lower manufacturing costs, but chooses a different subsystem—closures for the large car—

because the incremental revenue enables it to partially offset the added cost of employing a test

bed. This incremental revenue depends on consumer willingness to pay and is a function of

the product’s price and fuel economy elasticities of demand (Equation (A.3)), which represent

consumer response to changes in both these vehicle attributes. Thus, the results confirm the

statement made in Section 4.3.3 that a firm will select the product whose consumers are most

willing to pay for improvements and try to capture that consumer value to offset the test bed’s

cost. The selection results also support the earlier observation that when learning is consid-

ered, the automaker will prefer to emphasize the use of a single material rather than introducing

different materials and be forced to start from scratch with each one. Regardless, the use of con-

sumer willingness to pay and volume-neutral price is just one approach to incorporating profit

into the materials selection process, but one that is clearly feasible and can provide additional

information to a firm faced with having to select new materials for its products.
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Appendix B

Integer Linear Programming Code

The following code was written for LINGO 11.0 linear programming software. In order to im-

prove the model’s performance, preliminary calculations are run in an Excel workbook and their

results read by the model.

1 MODEL:

2 TITLE MATLS_SELN;

3

4 !*** No learning ***;

5 !*** New vehicle designed every period ***;

6 !*** (with corresponding tooling investments) ***;

7

8

9 SETS:

10 TECHS: PD_AVAIL, D_CAFC, NPV_PREM, NUM_CONFL, NUM_REQD;

11 PDS: CAFC_TARGET, DISCOUNTED, DEFICIT;

12

13 TECH_APPL (TECHS, PDS): X;

14

15 TECH_RELNS (TECHS, TECHS): CONFLICTS, REQUIRED;

16 EXCHANGE (PDS, PDS): CREDITS;

17 ENDSETS

18

19

20 DATA:

21 TECHS, PD_AVAIL, D_CAFC = @OLE('matl_data.xlsx', 'TECHS', 'PD_AVAIL', 'D_CAFC');

22 NPV_PREM = @OLE('matl_data.xlsx', 'NPV_PREM');
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23

24 PDS, CAFC_TARGET, DISCOUNTED = @OLE('matl_data.xlsx', 'PDS', 'CAFC_TARGET', 'DISCOUNTED');

25 CONFLICTS, REQUIRED = @OLE('matl_data.xlsx', 'CONFLICTS', 'REQUIRED');

26

27 VEH_CAFC = @OLE('matl_data.xlsx', 'VEH_CAFC'); ! initial fleet CAFC number ;

28 FLEET_VOL = @OLE('matl_data.xlsx', 'FLEET_VOL'); ! total fleet volume ;

29

30 A_NUMBER = 500;

31 ENDDATA

32

33

34 CALC:

35 !*** Count number of conflicting or required technologies ***;

36 @FOR(TECHS(T):

37 NUM_CONFL(T) = @SUM(TECHS(U): CONFLICTS(T,U));

38 NUM_REQD(T) = @SUM(TECHS(U): REQUIRED(T,U));

39 );

40 ENDCALC

41

42

43 !*** Objective function ***;

44 MAX = @SUM(PDS(P):

45 DISCOUNTED(P) * @SUM(TECHS(T): X(T,P) * NPV_PREM(T)));

46

47

48 !*** Decision variable constraints ***;

49 @FOR(TECH_APPL(T,P):

50 @BIN(X(T,P));

51 );

52

53

54 !*** CAFE target constraint ***;

55 @FOR(PDS(P):

56 VEH_CAFC + @SUM(TECHS(T): X(T,P) * D_CAFC(T) / FLEET_VOL) ≤CAFC_TARGET(P)

57 );

58

59

60 !*** Technology implementation constraints ***;

61 @FOR(TECH_APPL(T,P):

62 NUM_CONFL(T) * X(T,P) + @SUM(TECHS(U): CONFLICTS(T,U) * X(U,P)) ≤NUM_CONFL(T); ! tech conflicts ;

63 NUM_REQD(T) * X(T,P) - @SUM(TECHS(U): REQUIRED(T,U) * X(U,P)) ≤0; ! tech symm requirements ;

64 );

65
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66

67 !*** Period availability constraints ***;

68 @FOR(TECHS(T):

69 @FOR(PDS(P) | P #LT# PD_AVAIL(T):

70 X(T,P) = 0;

71 );

72 );

73

74

75 DATA:

76 @OLE('matl_data.xlsx', 'X_OUT') = X;

77 ENDDATA

Listing B.1: Integer linear program code for automotive case study.
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Appendix C

Genetic Algorithm Code

The following set of code is used to run a genetic algorithm in MATLAB. It consists of 3 files:

readFiles.m gathers and processes the data from an Excel file, fitness.m evaluates the fit-

ness of each candidate solution or chromosome, and matlSeln.m initializes and runs the genetic

algorithm. Only the code used to set up and run the optimization process, and the fitness func-

tion are shown below. The GA code itself is part of MATLAB’s Global Optimization toolbox.

1 % Single-objective GA with all objectives combined into one value

2 % Read inputs from Excel file

3 clear all

4 readFiles16; % read data from Excel file and generate inputs

5

6 % =============================================================================

7 % Linear program seed values

8

9 ilpST = [0 0 0 0 0 0 2 2 0 0 2 2 0 0 1 1 0 0 2 2 0 0 3 3 0 0 3 3];

10 ilpLT = [0 0 0 0 0 0 2 2 0 0 2 2 0 0 1 1 0 0 3 3 0 0 2 2 0 0 3 3];

11 gaOut = [0 0 0 0 0 0 2 2 0 0 2 2 0 0 1 1 0 2 3 3 0 0 2 2 0 0 3 3];

12

13 % =============================================================================

14 % Initialize GA variables and options

15

16 nvars = apps * pds; % chromosome (genome) length

17 popSize = 8 * nvars; % number of chromosomes in the population

18 last = 100; % number of generations

19 replace = 0.6; % fraction of chromosomes replaced
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20 limits = [zeros(1, nvars); maxGeneVal]; % boundaries on each gene

21

22 options = gaoptimset();

23 options = gaoptimset(options, 'PopulationType', 'custom');

24 options = gaoptimset(options, 'CreationFcn', @chrCreation);

25 options = gaoptimset(options, 'MutationFcn', @chrMutation);

26 options = gaoptimset(options, 'CrossoverFcn', @crossovertwopoint);

27 options = gaoptimset(options, 'SelectionFcn', @selectiontournament);

28 options = gaoptimset(options, 'PopulationSize', popSize);

29 options = gaoptimset(options, 'CrossoverFraction', replace);

30 options = gaoptimset(options, 'Generations', last);

31 options = gaoptimset(options, 'PopInitRange', limits);

32 options = gaoptimset(options, 'InitialPopulation', [ilpST; ilpLT]);

33

34 % =============================================================================

35 % Running the GA

36

37 fprintf('Running GA: ');

38 tic

39 for j = 1:5

40 [x fval] = ga(@fitness16, nvars, [], [], [], [], limits(1,:), limits(2,:), [], options);

41 optChoice(j,:) = +x;

42 netRev(j) = -fval;

43 % options = gaoptimset(options, 'InitialPopulation', optChoice(j,:));

44 end

45 toc

46

47 % =============================================================================

48 % Convert optChoice into something more useful

49

50 [maxVal maxInd] = max(netRev);

51 maxCnt = sum(netRev == maxVal);

52 maxX = optChoice(maxInd,:);

53

54 for a = 1:apps

55 maxChr(a,:) = maxX( ((a-1) * pds + 1):(pds*a) );

56 end

Listing C.1: matlsSeln.m – Code to read in materials data and initialize and run genetic algo-

rithm for automotive case study.
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1 function tf = fitness16(chr)

2

3 % ********************************************************************************

4 % Global variables

5

6 global pds yrs apps yrsPerPd btAll discount

7 global btAppGrP btAppSubP learnData

8 global initCAFCVol cafcTargetVol btDelCAFC cafcUnitPenalty availUnitPenalty

9 global btVol btPdAvail btToolsPerYr btLearn btDedInvLife

10 global btAsmInv btDedInvCost btDelRev btEffVarUnit btAsmBldg

11

12

13 % ********************************************************************************

14 % convert chromosome into a more useful form

15

16 % initialize gene

17 btGene = zeros(btAll, pds);

18

19 % breakdown chromosome into individual materials

20 for a = 1:apps

21 appUse = chr( ((a-1) * pds + 1):(pds*a) ); % (row) break down chr into [apps x 1 pd] array

22 btGene = btGene | ((btAppGrP == a) & (btAppSubP == repmat(appUse, btAll, 1)));

23 end

24

25

26 % ********************************************************************************

27 % initialize variables

28 volUsed = btVol .* btGene; % (mtx) volume at (t,p) is non-zero if tech used

29 cumVol = zeros(btAll, 1); % (col) cummulative volume for variable cost learning

30 asmCost = zeros(1, yrs); % (row) assembly equipment cost

31

32 % check if CAFE standard met; need cafcMet(p) ≤0

33 cafcChange = sum(btDelCAFC .* btGene); % (mtx) effect on CAFC at (t,p) if tech used

34 cafcDiffPd = initCAFCVol + cafcChange - cafcTargetVol; % (row) CAFC shortfall (or surplus) for each period

35

36

37 % ********************************************************************************

38 % calculate objectives for each period

39 for p = 1:pds

40

41 % check for early implementation

42 implEarly(:,p) = (btPdAvail > p);

43
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44 % years encompassed by period

45 yMin = (p - 1) * yrsPerPd + 1;

46 yMax = p * yrsPerPd;

47

48 % assembly cost at the beginning of each period

49 asmCost(yMin) = btAsmInv(p,:) * btGene(:,p);

50

51 % dedicated (tooling) investment costs

52 pdTooling = btGene(:,p) .* btToolsPerYr(:,p); % (col) purchase new tools at beginning of p

53 toolLifeVol = zeros(btAll, 1);

54

55 for y = yMin:yMax

56

57 % CAFC difference for each year

58 cafcDiff(y) = cafcDiffPd(p);

59

60 % variable and non-dedicated investment cost of baseline and implemented technologies

61 nextCumVol = cumVol + learnData * volUsed(:,p);

62

63 % calculate normalized learning curve cost at current, "midway," and future cumulative volumes

64 cLo = sqrt(1 - btLearn(:,1)) .ˆ max(0, log2( min( cumVol, btLearn(:,3)) ./ btLearn(:,2) ));

65 cMd = sqrt(1 - btLearn(:,1)) .ˆ max(0, log2( min((cumVol + nextCumVol) / 2, ...

66 btLearn(:,3)) ./ btLearn(:,2) ));

67 cHi = sqrt(1 - btLearn(:,1)) .ˆ max(0, log2( min(nextCumVol, btLearn(:,3)) ./ btLearn(:,2) ));

68

69 % estimate average cost based on normalized learning curve results

70 avg2 = (cMd 6=1) .* (cMd + cHi) / 2 + (cMd == 1) .* (cMd + (cMd + cHi) / 2) / 2;

71 avg1 = (cMd 6=(1 - btLearn(:,1))) ...

72 .* (cLo + cMd) / 2 + (cMd == (1 - btLearn(:,1))) .* ((cLo + cMd) / 2 + cMd) / 2;

73

74 avg1 = (cLo 6=1) .* avg1 + (cLo == 1) .* (cLo + (cLo + cMd) / 2) / 2;

75 avg2 = (cHi 6=(1 - btLearn(:,1))) ...

76 .* avg2 + (cHi == (1 - btLearn(:,1))) .* ((cMd + cHi) / 2 + cHi) / 2;

77

78 % scale normalized curve

79 learnedUnit(:,y) = btEffVarUnit .* (avg1 + avg2) / 2;

80

81 effVarCost(y) = (learnedUnit(:,y)') * volUsed(:,p) + btAsmBldg(p,:) * btGene(:,p);

82 cumVol = nextCumVol;

83

84 % replace tools that wear out

85 replTooling = (toolLifeVol > (btDedInvLife .* pdTooling)) .* pdTooling;

86 dedInv(y) = (pdTooling * (y == yMin) + replTooling)' * btDedInvCost;
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87 toolLifeVol = toolLifeVol .* (replTooling ≤0) + volUsed(:,p);

88

89 % total cost and revenue for the year

90 totalRev(y) = btDelRev * volUsed(:,p);

91 end

92 end

93

94

95 % ********************************************************************************

96 % net revenue for technologies

97 netRev = (totalRev - (effVarCost + asmCost + dedInv)) * discount;

98

99 % penalties

100 availPenalty = sum(sum(implEarly .* volUsed )) * availUnitPenalty;

101 cafcPenalty = max(cafcDiff, 0) * discount * cafcUnitPenalty;

102

103 tf = -(netRev - cafcPenalty - availPenalty);

104

105 end

Listing C.2: fitness.m – Fitness function for genetic algorithm.

157



158



Appendix D

Automotive Case Study Inputs

This appendix contains body-in-white and closure material inputs for the compact, midsize,

and large cars in the multi-product selection case study. Inputs from Table 6.3 are included for

consistency. All cost numbers were generated with the process-based cost models (discussed in

Section 3.2.1) and assume long-term cost; corresponding numbers for learning scope and rate

can be found in Table 6.4.
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