
 

 

Evaluating Manufacturing Flexibility Driven by Learning 
 

by 
Marie-Claude Nadeau 

 
B.Eng. Electrical Engineering 

McGill University, 2007 
 

Submitted to the Engineering Systems Division 
in partial fulfillment of the requirements for the degree of 

 
Master of Science in Technology and Policy 

 
at the 

Massachusetts Institute of Technology 
June 2009 

 
© 2009 Massachusetts Institute of Technology. All rights reserved. 

 
 

Signature of author: ..............................................................................................................  
Technology and Policy Program 

Engineering Systems Division 
May 8, 2009 

 
 
Certified by: .........................................................................................................................  

Randolph E. Kirchain, Jr. 
Associate Professor of Materials Science & Engineering and Engineering Systems 

Thesis Supervisor 
 
 
Certified by: .........................................................................................................................  

Richard Roth 
Director, Materials Systems Laboratory 

Thesis Supervisor 
 
 
Accepted by: ........................................................................................................................  

Dava J. Newman 
Professor of Aeronautics and Astronautics and Engineering Systems 

Director, Technology and Policy Program 
 
 

 



 

 2

 

 

 



 

 3

Evaluating Manufacturing Flexibility Driven by Learning 
 

by 
Marie-Claude Nadeau 

 
B.Eng. Electrical Engineering 

McGill University, 2007 
 

Submitted to the Engineering Systems Division on May 8, 2009 
 in partial fulfillment of the requirements for  

the degree of Master of Science in Technology and Policy 
at the Massachusetts Institute of Technology 

 
ABSTRACT 

A defining feature of modern industry is operating in a context of nearly continuous technological 
change. Nevertheless, industrial decision-makers must select technologies and implement 
production strategies even in the face of known-to-be-incomplete information and environmental 
uncertainties. Further complicating the picture, the performance, including the economic 
performance, associated with novel technology options is likely to change over time. To address 
this problem, two approaches are possible: improving the quality of currently available 
information, and implementing flexible production strategies. The present work characterizes 
how the former approach impacts the valuation of the latter. 

First, a dynamic approach integrating learning curves and process-based cost modeling is used to 
examine learning in manufacturing, thus allowing decision-makers to incorporate information 
about expected technology evolution into their economic evaluations of technology. The 
approach is applied to an automotive assembly process, and quantifies the cost impacts of 
learning improvements in manufacturing time, downtime, and defect rates. Analyses can be used 
to focus learning activities on primary learning operational drivers, and to forecast cost 
improvements for a novel process. 

Flexibility strategies are often focused on capital-intensive processes, while labor-intensive 
processes are thought to be inherently flexible. The existence of learning effects, however, 
implies that labor flexibility has costs and, potentially, benefits in the context of uncertainty. A 
simple automotive assembly case is used here to illustrate the impact of manufacturing learning 
on labor flexibility and its economic value. A framework using cash-flow and decision tree 
models is introduced to quantify the costs and benefits of acquiring worker flexibility, and 
improve information available for strategic decision-making in labor-intensive systems. The 
front-end characterization of the technical drivers of learning provides insight into how the value 
of flexibility can be impacted at the operational level, enabling managers to prioritize 
improvements and minimize the costs of flexibility. 
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1 Introduction 

Across almost every sector of the economy, a defining feature of modern industry is 

operating in a context of nearly continuous technological change. This implies that 

decision-makers have to operate in a highly uncertain environment, where external 

conditions, such as product demand and material prices, are in constant flux. Results of a 

business decision can therefore be uncertain even in cases of mature technology 

implementation. Nevertheless, despite this context, industrial decision-makers must still 

select and implement technologies – whether they be novel materials, processes, or 

architectures – even in the face of known-to-be-incomplete information.  Further 

complicating the picture, the performance, including the economic performance, 

associated with novel technology options is likely to change over time. Changes can 

emerge due to a number of mechanisms, including, for example, economies of scale, and 

changes in the factor prices associated with the technology. Moreover, evolution in 

performance can occur through gains in productivity that develop over time, or the 

learning effect.  

As a consequence of uncertainty in both future economic environment and technology 

performance, current financial data likely will not accurately reflect the future economics 

of a technology, and making decisions on this current data can be misleading. To address 

this issue, decision-makers can adopt two distinct approaches, or a combination of them: 

(a) improving the quality and quantity of the information currently available to them; and 

(b) implementing flexible business strategies to reduce the negative impacts of 

uncertainty or enable improvements as uncertainties are resolved. On the one hand, the 

first approach raises critical questions for technology decision-makers: How can one 

estimate the future economics of a novel technology? How can one determine which 

strategies will be most effective for driving down the costs of a particular technology? On 

the other hand, the second approach raises another important issue: How can one estimate 

the costs and benefits of flexible strategies under conditions of external uncertainty?  

Moreover, these issues bring about the question of interaction between the two 
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approaches, i.e. how can improved information or understanding about the future 

economics of a technology impact the evaluation of flexible strategies, and thus strategic 

decision-making? How can operational strategies to improve the cost of a particular 

technology also improve or degrade the value of flexibility strategies? 

This thesis attempts to partly answer these questions by particularly focusing on learning 

effects in manufacturing and their impact on the value of flexibility in a labor-intensive 

system. First, an analytical framework is used that allows decision-makers to incorporate 

information about expected technology evolution into their economic evaluations of 

technology. This is accomplished through the use of process-based cost modeling 

(PBCM), a modeling approach that deconstructs the determinants of manufacturing 

economics. As such, PBCM provides a convenient and powerful framework within which 

to study the impact of learning on major underlying cost drivers and, therefore, on overall 

cost evolution. In particular, this document explores the value of a dynamic PBCM 

approach by examining the effect of learning on process parameters such as 

manufacturing time, downtime, and defect rate on cost evolution. This approach provides 

a technical-level understanding of how cost evolution depends on product or process 

characteristics. In particular, results demonstrate that the scope and timing of cost 

learning behavior varies across processes depending on their technical and financial 

characteristics, as well as across cost elements within individual processes. These 

observations suggest that the proposed approach has the potential not only to improve 

future cost estimates and technology selection, but also to direct action in order to 

facilitate learning by targeting the most effective drivers, and to achieve the highest 

available cost reductions in a timely manner.  

Second, an approach is presented which uses the previously described characterization of 

learning effects to evaluate flexibility strategies for a manufacturing process. This 

approach characterizes the impact of cost learning on the value of flexibility, particularly 

in a labor-intensive process. Evaluation of flexibility strategies is often focused around 

capital-intensive processes, partly because labor-intensive processes are widely thought 

to be inherently flexible. The existence of learning effects, however, implies that labor 
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flexibility is not inherent or immediate; that is, workers are not able to produce any new 

product immediately at optimal cost or performance, and this flexibility only comes about 

via cumulative experience. Acquiring this experience has costs; yet, because it leads to 

increased flexibility, it can be seen to have potential benefits in the context of uncertainty. 

The framework introduced here integrates the dynamic PBCM characterization of 

learning effects with simple cash-flow and decision tree models, in order to quantify the 

costs and benefits of acquiring worker flexibility through cumulative experience. This 

aims to improve information available for strategic decision-making in labor-intensive 

systems. A stylized automotive assembly case is explored to illustrate the impact of 

manufacturing learning on labor flexibility and its economic value. Specifically, flexible 

and non-flexible product-to-plant allocation schemes are evaluated in the context of 

demand uncertainty for a novel technology. Results show that considering learning 

effects can: (i) provide a structured approach for the evaluation of labor functional 

flexibility; (ii) increase the value of this flexibility; and (iii) change economically 

preferred strategic flexibility decisions in terms of product-to-plant allocation. By linking 

this analysis to the front-end characterization of the technical drivers of learning, insight 

is gained as to how the value of flexibility can be impacted at the operational level, 

enabling managers to prioritize improvements, minimize the costs of flexibility, and 

maximize the positive uncertainty mitigation effects of flexible labor strategies. 

The balance of this document proceeds by first presenting a review of past publications 

on the two major subjects of interest in this thesis: learning in manufacturing; and 

flexibility in manufacturing, with a special focus on worker flexibility. A methodology is 

then presented to complement this past work, by integrating a dynamic process-based 

cost modeling approach to learning with cash-flow and decision tree modeling tools for 

flexibility valuation. The method is used in the context of a case study on automotive 

general assembly. First, learning effects are examined from the perspective of the cost 

impact of individual cost drivers (manufacturing time, downtime, and defect rate) and 

differentiated impact on various elements with the process’ cost structure (labor, energy, 

overhead, equipment, tooling, building, and maintenance costs).  
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The cost learning characterization obtained for automotive assembly is then integrated 

into a cash-flow model, and combined with a decision tree model of demand uncertainty 

for two novel automotive products. These models are used to evaluate a number of 

flexible and non-flexible decision scenarios pertaining to the allocation of these products 

to two individual plants. Economically preferred decisions as well as the value of 

flexibility are compared under varying operating conditions, and the consideration of 

learning effects in decision-making is shown to increase the perceived value of flexibility.  
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2 Literature Review 

The present work occurs at the intersection of two literatures in the realm of 

manufacturing: specifically, it attempts to both extend and further the connection between 

learning curve theory, and the valuation of flexibility. This chapter presents an overview 

of the previous work on each subject, as well as how they have been linked in the past.  

2.1 Manufacturing Learning 

Learning curve theory is based on the observation that the amount of input required to 

produce a unit output level diminishes as production progresses.  This theory is usually 

attributed to T.P. Wright, who introduced a mathematical model (2.1) describing a 

learning curve in 1936 (Wright 1936). Wright showed that the cumulative average direct 

labor input for an aircraft manufactured on a production line decreased in a predictable 

pattern.  The decrease was attributed to the increased proficiency, or learning, of the 

manufacturing workers on the line as they performed various repetitive tasks.  Wright 

described the learning effect using an exponential function of the form:  

 b
Vh aV −=  (2.1) 

where hV is the number of labor hours required to produce the Vth unit; a is the number of 

labor hours required to produce the first unit, hence a = h1; V is the cumulative number of 

units produced; and b is a parameter describing the learning behavior.   

Numerous studies in a variety of sectors and industries have led to the recognition of the 

wide applicability of the learning effect. Among other industries, the behavior has been 

documented in the manufacturing of aircrafts (Hartley 1965; Argote and Epple 1990), 

automobiles, apparel, and large musical instruments (Baloff 1971) metal products 

(Dudley 1972), steam turbine generators (Sultan 1974), chemicals (Lieberman 1984; 

Sinclair, Klepper et al. 2000), radar equipment (Preston and Keachie 1964), ships 

(Argote, Beckman et al. 1990), and rayon (Jarmin 1994). Learning curves have also been 

applied to the cost of power plants (Zimmerman 1982) and in the construction industry 
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(Tan and Elias 2000). Most recent areas of application include the semiconductor 

industry (Dick 1991; Gruber 1992; Grochowski and Hoyt 1996; Hatch and Mowery 

1998; Chung 2001), fuel cells (Tsuchiya and Kobayashi 2004), ethanol production 

(Goldemberg, Coelho et al. 2004), as well as carbon capture and sequestration (Riahi, 

Rubin et al. 2004). 

The learning effect has also been shown to occur for aspects of manufacturing other than 

labor time input or labor costs. Boston Consulting Group (Henderson 1972) added a new 

dimension to the concept in late the 1960s when it demonstrated that learning curves can 

also characterize administrative, capital and marketing costs. Of particular note to the 

work presented here, learning behaviors have been shown to occur in operational 

characteristics such as nuclear power plant reliability (Joskow and Rozanski 1979); 

surgery success rates (Kelsey 1984); semiconductor chip yield (Chung 2001); yield, 

speed of production, and processing capability (Terwiesch and E. Bohn 2001); and the 

amount of rework needed after a manufacturing process (Jaber and Guiffrida 2008).  

Although learning effects have been demonstrated in a large number of contexts, high 

variations in learning rates have also been observed across different products and 

organizations. Gruber (Gruber 1992) has shown that variations in learning occurred 

within a single semiconductor manufacturing company across chip types, even if the 

chips were considered very similar. Variations have also been observed across 

organizations producing the same product (Argote, Beckman et al. 1990; Argote and 

Epple 1990), and across shifts within the same organization (Epple, Argote et al. 1991). 

Understanding the sources of these variations, and thus the underlying mechanisms that 

drive learning, has been the object of significant work. The importance of understanding 

the underlying mechanisms of learning is based on the observation that the learning 

process is not guaranteed; rather, it is an opportunity for management action to produce 

improvements (Day and Montgomery 1983; Dutton and Thomas 1984; Terwiesch and E. 

Bohn 2001). This view of the learning effect as actionable has been adopted by many in 

the context of developing firm operational strategies. Spence (Spence 1981), for example,  

developed a model of competitive interaction and industry evolution, concluding that a 
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firm can achieve higher profits in the long run by increasing current production in order 

to move down the learning curve faster than its competitors. Argote has particularly 

focused on the organizational mechanisms responsible for learning and knowledge 

management (Argote 1993; Argote, McEvily et al. 2003). Lapre et al. (Lapre, Mukherjee 

et al. 2000) have shown that quality improvement activities can positively impact 

learning when they lead to acquiring both know-why and know-how; Hatch and Dyer 

(Hatch and Dyer 2004) also show that investment in human capital can lead to 

accelerated learning. Terwiesch and Xu (Terwiesch and Xu 2004) have examined how 

learning effort and process change can be traded-off in order to optimize a desired 

outcome. While these studies have provided powerful insights into strategies to improve 

learning, they have focused on higher level industrial and organizational performance and 

strategies. In doing so, these studies have not attempted to prioritize the different types of 

sources of learning that could occur at the operational level. To explore the possibility of 

gaining that insight, this paper will couple the concepts of a learning effect within a 

detailed generative cost model. 

Others have explored the coupling of learning and more detailed models. Womer (Womer 

1979) in particular, emphasized the importance of integrating production functions with 

learning models, and production functions integrating a learning curve parameter have 

been used in a number of empirical studies (Preston and Keachie 1964; Rapping 1965; 

Argote, Beckman et al. 1990). In another paper, Day and Montgomery (Day and 

Montgomery 1983) characterized their ‘experience curve’ as comprising the effects of 

learning, technological advances, and scale economies. They also noted that different 

learning curves can be applied to different cost types, among which they distinguished 

value-added and controllable costs, and observed that this approach could yield a total 

cost learning curve that can be significantly different from the result obtained if a single 

curve is applied directly. Nadler and Smith (Nadler and Smith 1963) developed a method 

which decomposes a manufacturing process into a number of individual operations, and 

applies a learning curve to each of them. The total learning function for a product is then 

the time-weighted combination of these individual learning curves. Most recently, 

Terwiesch and Bohn (Terwiesch and E. Bohn 2001) examine how learning should be 
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focused on yield or production rate improvement, depending on the economic conditions 

that prevail in the system.  

To-date, across this literature, no study has explored the differentiated effects of learning 

across various operational characteristics, how those effects combine and translate into 

aggregate financial behavior, or the trade-offs that exist in emphasizing specific elements 

of operational learning. This research will use the method introduced by Kar (Kar 2007) 

to demonstrate that by developing insight at the operational level, it may be possible to 

both characterize the potential for cost learning of a specific technology based on that 

technology’s financial and process characteristics and to prioritize the efforts of an 

operational manager to maximize the economic impact of learning activities. The former 

should improve technology selection decision-making; the latter should improve 

operational decisions. 

2.2 Manufacturing Flexibility 

2.2.1 General framework 

Flexibility in engineering systems has been the focus of a large body of literature in 

recent years, and its strategic importance in the context of an uncertain environment has 

been widely recognized (de Neufville, de Weck et al. 2004; Saleh 2008). It can be 

generally defined as “the ability to change or react with little penalty in time, effort, cost 

or performance” (Upton 1994). The abstract nature of the concept has led to a number of 

researchers generating frameworks, taxonomies, and definitions for various types of 

flexibility. Most recently, Saleh (Saleh 2008) provided a multi-disciplinary review of the 

subject. Multiple studies have also focused specifically on flexibility in manufacturing 

systems (see for example (Sethi and Sethi 1990; Hyun and Ahn 1992; Gerwin 1993; 

Upton 1994; Beach, Muhlemann et al. 2000; Gerwin 2005; Saleh 2008)).  

An especially comprehensive taxonomy of manufacturing flexibility is provided by Hyun 

and Ahn (Hyun and Ahn 1992), and is summarized in Table 1. Their systems view 

focuses on the relationship between overall system flexibility and the flexibility of its 



 

 21

components, and specifically hardware and software components, in the case of 

manufacturing flexibility. Their environment-associated view characterizes the 

components of flexibility by the interactions they have with internal and external 

environmental uncertainties. Finally, what they term the decision-hierarchical view 

defines the type of flexibility by the time span which is associated with a flexibility 

decision.  

Machine Ability to replace tools with low setup; to process a wide 
range of products 

Routing Ability to vary machine visitation sequence in case of 
breakdown 

Control Ability to change the ordering of operations 
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Worker Ability of workers to operate various machines or to alter 
working methods 

Expansion Ability to handle increases in capacity 

Product Ability to handle non-standard orders; to make design changes

Mix Adaptability of the system to changes in product mix 

Volume Ability to accelerate production to meet demand profitably E
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Program Ability to handle contingencies during operation 

Long-term 
(strategic) 

Ability to reposition in a market, change strategy, introduce 
new products 

Mid-term 
(tactical) 

Ability to operate at varying rates, accept varying parts, 
monitor the manufacturing process, convert the plant to other 
uses 
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Short-term 
(operational) 

Ability to reset and readjust between known production tasks, 
to admit variations in sequencing, scheduling 

Table 1: Classification and definition of various types of flexibility (Hyun and Ahn 1992) 

Particularly relevant to the present work is worker flexibility and its potential impact on 

mix flexibility, which is also appears as process flexibility (Sethi and Sethi 1990), or 
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product mix flexibility (Saleh 2008) in the literature.  

Sethi and Sethi regard machine, material handling and operation flexibilities as 

contributing to process flexibility; they also note its dependence on a multi-skilled 

workforce. However, the concept of worker flexibility is notably absent from their formal 

classification. Their survey is not a unique case. Although the importance of multi-skilled 

labor is sometimes recognized in passing (for instance, in (Sethi and Sethi 1990; Upton 

1994; Saleh 2008)), labor flexibility is not identified in most of the general 

categorizations referred to above. In fact, labor is often thought of as inherently flexible, 

with the implementation of flexibility strategies being seen as making manufacturing 

technology more human-like (see (Simon 1977), cited in (Sethi and Sethi 1990)). 

Nonetheless, the issue of worker flexibility has been the object of a somewhat distinct 

body of literature, which will be treated in  2.2.2.  

Another common feature of many flexibility overview studies is the observation that 

flexibility is a proactive strategy (Gerwin 1993), one that should be acted upon by 

managers both at the strategic and operational levels (de Neufville, de Weck et al. 2004). 

Sethi and Sethi (Sethi and Sethi 1990), for example, systematically identify the general 

means by which each type of flexibility can be achieved. However, in recent work, 

identifying methods for delivering, operationalizing and embedding flexibility into 

engineering systems is still often recognized as one of the main challenges and academic 

gaps in flexibility literature (Upton 1994; Gerwin 2005; Saleh 2008). 

2.2.2 Worker flexibility 

In the last decades, worker flexibility has been widely identified as an issue of strategic 

importance for firms in a number of industries (Atkinson 1985; Blyton 1996; Esping-

Andersen 1999), although some studies have suggested that its value is not universal 

(Valverde, Tregaskis et al. 2000; Hoyt and Matuszek 2001). Labor flexibility can be 

implemented at many levels, some of which are described in Table 2. The present work 

will focus on functional flexibility, and will generally refer to it simply as labor or worker 
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flexibility.  

Numerical flexibility Ability to adjust the number of workers employed 

Temporal flexibility Ability to employ workers with varying work terms 

Financial flexibility Ability to adjust worker pay to reflect performance 

Functional flexibility Ability of workers to perform multiple different tasks 

Table 2: Description of various types of worker or labor flexibility (Blyton 1996) 

In the manufacturing literature, functional flexibility has probably received the most 

attention. Hyun and Ahn (Hyun and Ahn 1992) identified it as the differentiating factor 

between Japanese firms’ success and American firms’ failure at implementing and 

operating flexible manufacturing systems (FMS). Blyton (Blyton 1996) points out that 

advantages of functional flexibility are more than performance-related, and include 

increased job satisfaction and earnings potential for workers. In an empirical study, 

Zhang and Vonderembse (Zhang, Vonderembse et al. 2003) also established a positive 

statistical link between labor flexibility as a flexible competence, flexible capacities such 

as mix and volume flexibilities, and customer satisfaction. This link between worker and 

mix flexibilities will be explored in more detail in the present work. 

Much of the work on worker flexibility in manufacturing systems was done in the context 

of modeling and analyzing dual resource constrained (DRC) systems.  In DRC job shops, 

both machines and labor impose constraints on production, and their allocation scheme 

impacts system performance. The literature on the subject recognizes the relevance of 

worker flexibility as a mitigation strategy in the face of many types of uncertain 

environments. While some do it at the qualitative level (Atkinson 1985; Blyton 1996), 

others explicitly model or quantify the impact of uncertainty. Some researchers focused 

on the performance of cross-training policies under internal uncertainties occurring at the 

operational level, such as variations in job arrival rates (Malhotra, Fry et al. 1993; Fry, 

Kher et al. 1995; Felan and Fry 2001), individual machine processing times, and 

absenteeism (Bokhorst, Slomp et al. 2004). Jordan and Inman also consider large 
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uncertainties in task arrival rates in their study of chained cross-training (Jordan, Inman et 

al. 2004). Yue et al. (Yue, Slomp et al. 2008) examine the impact of variations in a part’s 

expected life cycle. Others examined a wider range of uncertainties. Malhotra and 

Ritzman (Malhotra and Ritzman 1990) compared the impacts of machine and labor 

flexibilities in a DRC shop under various uncertainties, including unreliable vendors, 

yield loss, inaccurate records, equipment failure, demand variability, and missing 

components. Ramasesh and Jayakumar (Ramasesh and Jayakumar 1991) measure a group 

of flexibilities, including labor flexibility, with respect to variations in product mix and 

worker skills.  

Most work on labor flexibility identifies training, or cross-training, as a requirement for 

the acquisition of a multi-skilled workforce. Carrillo and Gaimon (Carrillo and Gaimon 

2004) recognize the importance of knowledge management for process change, 

particularly focusing on the fact that the increase in capabilities resulting from learning 

and training is itself associated with much uncertainty. Furthermore, some analyses use 

learning curve theory to quantify the performance drawbacks associated with training 

during the acquisition of worker flexibility. The vast majority of DRC studies 

incorporating learning curves use a log-linear model (Felan and Fry 2001), sometimes 

combined with models to account for labor attrition rates (Malhotra, Fry et al. 1993; Fry, 

Kher et al. 1995), or forgetting (Yue, Slomp et al. 2008). The specific use of learning 

curves for the measurement of the performance cost of flexibility will be discussed in 

 2.2.3 below. 

2.2.3 Measurement and valuation 

Establishing adequate, generalized measures of flexibility has been another challenge of 

flexibility literature. In this section, two sorts of approaches to the measurement of 

flexibility will be reviewed: non-financial, or performance-based, approaches; and 

financial, or value-based, approaches. Both approaches comprise multiple specific 

implementations suggested in the literature. 

Non-financial measures of flexibility have been reviewed by a number of researchers. 
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Gerwin (Gerwin 1993) enumerates the most common: the number of options available; 

entropy; the range in defining characteristics of the output; impact on a given 

performance criterion; and qualitative scales. The physical units of these measures are 

mostly dependent on the type of flexibility one considers. Moreover, as Ramasesh and 

Jayakumar (Ramasesh and Jayakumar 1991) point out, they are local measures, in that 

they look to specific aspects or dimensions of flexibility without regard for possible 

interactions or trade-offs. Gerwin’s later study (Gerwin 2005) also suggests numerous 

measures which are particular to the type of flexibility. The same observation applies to 

the survey done by Sethi and Sethi (Sethi and Sethi 1990), which presents a large number 

of possible measurements that are all specific the type of flexibility considered. For 

instance, non-financial measures of process (i.e. mix) flexibility reviewed include the 

number of part types the system can produce, the range of certain part characteristics, the 

changeover time required, and the ratio of total output to waiting costs of parts. More 

recently, in an empirical study, Koste et al. (Koste, Malhotra et al. 2004) reviewed 24 

scales for measuring six different flexibility dimensions, and proposed that the scales 

within each dimension could be grouped into factors representing “scope” and 

“achievability” of flexibility responses.  

Most research specific to worker flexibility has adopted performance-based measurement 

approaches. In DRC literature, mean flow time, or an equivalent, is often the metric of 

choice (Malhotra, Fry et al. 1993; Fry, Kher et al. 1995; Bokhorst, Slomp et al. 2004; 

Jordan, Inman et al. 2004; Yue, Slomp et al. 2008). This is the amount of time required 

for a job to finish processing all operations. It can be accompanied by mean tardiness 

(Malhotra, Fry et al. 1993; Fry, Kher et al. 1995; Felan and Fry 2001), which is the 

average amount of time a job is completed after its due date, and is sometimes viewed as 

a proxy for customer satisfaction (Malhotra and Ritzman 1990). Standard deviation in 

workload is also used as a proxy for worker satisfaction by Bokhorst and Slomp 

(Bokhorst, Slomp et al. 2004). Other performance-based measures include total inventory 

(Malhotra and Ritzman 1990; Felan and Fry 2001), and percent time spent on learning 

(Malhotra, Fry et al. 1993). 
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Many performance-based metrics used in the DRC literature are taken as proxies for the 

cost of worker flexibility. In the context of evaluating the impact of labor attrition on 

flexibility, Fry et al. (Fry, Kher et al. 1995) use the mean number of worker transfers and 

direct labour variance in this way. Felan and Fry (Felan and Fry 2001) apply criteria of 

operating variance and transfer variance as a measure indicative of cost. Fry et al. (Fry, 

Kher et al. 1995) also suggest it is possible to determine the performance cost of worker 

flexibility directly from the applicable learning curve model. As illustrated in Figure 1, 

the total lost performance is then equal to the area under the learning curve and above the 

standard processing time. That is, the cost in processing time is given by: 

 ( )
1

( )
totV

stdt V t dV−∫  (2.2) 

where V is the cumulative production volume; Vtot is the total volume produced over the 

lifetime of the product; t(V) is the unit processing time at a cumulative volume of V, or 

learning curve; and tstd is the standard unit processing time. The form used for t(V) is 

most frequently Wright’s log-linear model. However, the analysis and discussion of the 

impact of learning on flexibility is often limited, as the learning rate is either fixed 

arbitrarily, or given at most two discrete values. 
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Figure 1: Performance cost of acquiring worker flexibility, determined from a learning curve (Fry, 

Kher et al. 1995) 
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In the general flexibility literature, value-based approaches to the measurement of 

flexibility have been widely discussed. Financial measures have multiple advantages. 

They are applicable to any type of flexibility, and allow their simultaneous measurement 

along multiple dimensions (Ramasesh and Jayakumar 1991), including both costs and 

benefits. Many have also noted that for the purpose of measurement, flexibility should 

not be isolated from the environment in which the manufacturing system functions 

(Ramasesh and Jayakumar 1991), since flexibility is the systems ability to respond to that 

environment. In particular, any measure of flexibility should take into account the level of 

uncertainty present in the environment and management objectives, in addition to any 

properties or configurations of the system (Gupta 1993). Value-based approaches also 

have limitations - for example, they are often only applicable to problems with 

comparable time horizons (Ramasesh and Jayakumar 1991). They still find a large 

number of proponents, however, since a universal measure has yet to be identified (Saleh 

2008). A large number of models using value-based criteria have been introduced for the 

evaluation of flexibility; for example, stochastic models applied to the valuation of 

product flexibility include the ones presented by Fine and Freund (Fine and Freund 

1990), and Gupta (Gupta 1993).  

Borison (Borison 2005) provides a good review of flexibility valuation methods, and 

classifies them into four categories: classic, subjective, marketed asset disclaimer (MAD), 

revised classic, and integrated approaches. They are summarized in Table 3. 
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Approach Tools  

Classic Classic option pricing 
tools from finance theory 

Assumes existence of a replicating portfolio; 
inputs determined from market data 

Subjective Classic option pricing 
tools from finance theory 

Assumes existence of a replicating portfolio; 
inputs determined from subjective estimates 

MAD Cash-flow model; Monte 
Carlo simulation; 
binomial lattice 

No replicating portfolio assumption; 
simulation and C-F model used to obtain a 
distribution of NPV to populate lattice 

Revised 
classic 

Classic option pricing 
tools; cash-flow model 
and decision tree 

Distinguishes two investment types. If risks are 
public, apply classic approach. If risks are 
private, apply decision analysis. 

Integrated Classic option pricing 
tools; cash-flow model 
and decision tree 

Distinguishes two types of risk within private 
investments. For public risks, calculate risk-
neutral probabilities; for private risks, estimate 
probabilities subjectively. 

Table 3: Real options/flexibility valuation approaches (Borison 2005) 

It is also useful to note that within the domain of value-based approaches, many metrics 

can be used as a measurement of flexibility. Some are based on expected costs (Fine and 

Freund 1990), or revenues (Jaikumar 1984; Gupta 1993). Cardin et al. (Cardin, de 

Neufville et al.) use a combination of expected net present value (NPV), and what they 

term Value-At-Risk and Gain (VARG) charts, which are effectively cumulative 

probability distributions of NPV. Their approach thus considers both the value and the 

risk associated with flexibility. Similarly, Ramasesh and Jayakumar (Ramasesh and 

Jayakumar 1991) take into account both value and risk by constructing a metric equal to 

the expected NPV divided by the standard deviation.  

Most literature on the value of flexibility and real options focuses on capital-intensive 

systems, with high upfront costs for the acquisition of flexibility. Of the studies 

mentioned above, only Ramasesh and Jayakumar’s work (Ramasesh and Jayakumar 

1991) includes labor flexibility in its evaluation. To do this, they apply rules to labor 

resources which are akin to the rules for machine resources: each worker’s productivity is 
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associated with a probability distribution, and their capabilities are binary – i.e. they are 

labeled as able or unable to process a given product. The cost of flexibility is uniquely 

represented for all flexibilities by a fixed cost that is added when a new product is 

introduced on the line.  

The existence of learning implies that worker flexibility has unique features which 

distinguish it from its technological counterparts: for example, that productivity may 

increase over time instead of being randomly distributed; that the flexibility or 

inflexibility of labor resources may not be discrete characteristics since even inflexible 

labor may be able to produce multiple products, simply at higher cost; and that the cost of 

acquiring flexibility is not only fixed and paid upfront, but is instead spread out and 

decreases over time. Indeed, from the studies on learning effects presented above, the 

cost of acquiring flexibility can be viewed as the cost of the extra input required to 

produce the first units of output – i.e. the area between the learning curve and the 

standard or optimal cost level. In accordance with Wright’s learning model, this 

additional input requirement decreases (at a decreasing rate) with cumulative experience.  

The research presented here seeks to further the work on the valuation of worker 

flexibility by strengthening the link between value and manufacturing learning. Learning 

curve theory provides a framework that enables a more specific understanding and 

quantification of the costs and benefits of acquiring worker flexibility. It also provides 

insight into how this value can be impacted. The former could improve the value of 

decision-making with respect to worker flexibility, while the latter could improve the 

ability of operational managers to minimize its cost.  
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3 Problem Statement 

3.1 Gap analysis 

The present research attempts to complement past work on worker flexibility by 

proposing two extensions, as well a strengthening of the link between manufacturing 

learning and flexibility. 

Table 4 summarizes the features which are included in six studies on worker flexibility. 

The table highlights that none of the work ties manufacturing learning to its operational 

drivers. Moreover, no single study examines the full spectrum or chain of events, from 

operational drivers of learning to economic value of labor flexibility; and in fact, none 

establishes the link between learning and value. Furthermore, the impact of learning rates 

on worker flexibility deserves more attention, as it has only been briefly addressed in the 

studies shown here.  
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Describes operational drivers of 
learning       

Quantifies and connects learning to 
worker flexibility       

Identifies worker flexibility as 
uncertainty mitigation strategy       

Measures worker flexibility        

Values flexibility economic costs and 
benefits       

Table 4: Features included in studies on worker flexibility 
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The present work will provide an analysis following the full path from operational 

parameter improvement, to manufacturing cost learning, to worker flexibility, and to 

economic value. This will introduce a framework to better quantify the costs and benefits 

of acquiring worker flexibility, and improve the information available for strategic 

decision-making in contexts involving non-capital intensive, labor intensive 

manufacturing systems. Furthermore, the front-end characterization of the technical 

drivers of learning will provide insight into how the value of this flexibility can be 

impacted at the operational level, thus helping manager prioritize improvements in order 

to minimize the costs of flexibility.  

3.2 Research Questions 

In providing an analysis of the impact of learning on the value of flexibility, this thesis 

seeks to answer the following questions: 

1. What is the economic impact of learning effects on a labor-intensive process like 

general assembly? 

2. What is the impact of learning effects on the value of flexibility, and more 

specifically the value of labor functional flexibility? 

3. Can considering learning effects change strategic-level decisions with respect to 

flexibility? 

Answering the first question involves characterizing learning effects in general assembly 

at the operational level, and linking this characterization to the process’ economic 

performance. By considering this economic performance in the context of an uncertain 

environment, a framework is created which enables the evaluation of learning-driven 

flexibility. Here, specifically, the value of labor flexibility driven by learning is quantified 

under uncertain product demand, and is compared to an evaluation of flexibility which 

would be done without consideration of learning effects.  

In either case, the evaluation can be assumed to lead to a strategic business decision as to 
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whether flexibility is implemented in the system. The decisions considered in later 

chapters relate to product-to-plant allocation, where the most economically favorable 

(lowest cost) allocation decision is preferred. The third question therefore looks at 

whether the differences in flexibility evaluation that stem from considering or neglecting 

learning effects will lead to changes such that different decisions become economically 

preferable. 

As a whole, these three questions and this document trace the path from the operational 

characterization of learning effects to strategic decision-making, via a framework that 

quantifies and focuses on the system’s economic performance. The economic lens is 

useful here as a common metric for connecting the various aspects of the problem, such 

as learning effects, process performance, labor flexibility, and strategic decision-making. 

The specific tools employed for this purpose are discussed in the next chapter. 
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4 Methodology 

The method presented in this document links manufacturing learning at the operational 

level to the value of labor flexibility and related strategic decisions. As depicted in Figure 

2, it is composed of four individual tools, which are described in more details in this 

chapter. First, Wright’s learning model is used to characterize learning effects at the 

operational level. This characterization is integrated with a process-based cost model 

(PBCM), which uses knowledge of the manufacturing process to produce estimates of 

cost learning as production progresses. The learning model and PBCM form the dynamic 

PBCM portion of the method.  

The characterization of cost learning obtained is then used in a cash-flow model to 

characterize the financial performance of a set of product-to-plant allocation decisions. 

This financial performance is evaluated against a number of demand scenarios which are 

defined in a decision tree. The valuation of flexibility is done by comparing the expected 

value of non-flexible decisions with the expected value of flexible decisions. The cash-

flow and decision tree models therefore constitute the real options or flexibility valuation 

portion of the method. 

 

Figure 2: Schematic overview of methodology 
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4.1 Process-Based Cost Modeling for General Assembly 

The impact of process parameters on production cost has been characterized in a static 

fashion previously through the use of a number of generative costing methods. This study 

will extend this by integrating learning effects into a specific modeling method, process-

based cost modeling (PBCM), which analytically derives from technical and operational 

drivers to estimate the total cost of production (Field, Kirchain et al. 2007). A static 

PBCM framework will be presented here, and the model implementation specific to 

general assembly will be described.  

4.1.1 Static process-based cost modeling framework 

The PBCM framework introduced by Field et al. (Field, Kirchain et al. 2007) is 

represented in Figure 3. It postulates that cost can be regarded as a function of technical 

factors, such as cycle time, downtime, reject rate, equipment and tooling requirements, or 

the material used. 

 ( , , , , , , .)Cost f cycletime downtime reject equipment tools material etc=  (4.1) 

Understanding the effect of these underlying technical cost drivers can provide insight for 

managers and engineers as to what process improvements are most critical to lower 

production costs (Fuchs, Bruce et al. 2006). It also allows them to better predict 

manufacturing costs for new technologies or designs, since it incorporates knowledge of 

technical, often more tangible, information about the products and processes, and does 

not rely wholly on historical data. Figure 3 shows the break-down of the overall cost 

model into three interconnected sub-models that describe the process, operational and 

financial aspects of production.  
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Figure 3: Process-based cost modeling framework (Field, Kirchain et al. 2007) 

The process model is based on engineering, technological and scientific principles. It 

relates final product or part characteristics such as size, shape, and material to the 

technical parameters of the process required to produce it. These parameters can include 

cycle time (the total processing time required for a single part); equipment capacity, such 

as press tonnage and size; and tooling requirements. The process model also characterizes 

the relationships and constraints between various processing variables: for example, 

increases in downtime and reject rates can limit the technical feasibility of reductions in 

cycle time.  

Processing requirements are passed on to the operational sub-model along with 

production operating conditions, which take into account the production shift schedule, 

working hours, and production volume. These inputs are translated into the total amount 

of equipment, labor, floor space, energy, and other resources needed to achieve the 

desired product output.  

The financial sub-model applies factor prices to the resource requirements determined by 

the operations model, and allocates costs over time and across products, in order to output 

a unit production cost. This figure can be broken down in terms of fixed and variable 

costs or into individual contributions from labor, equipment, tooling, and material costs. 

Although this cost is not time-dependent or cumulative volume-dependent, the underlying 

relationships implemented by the model enable the analysis of variations in production 

costs as operating and processing parameters change. Such sensitivity analyses allow 
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identification of primary cost drivers which can be targeted for improvement.  

4.1.2 Description of the static general assembly PBCM 

Production cost figures used in later analyses are generated by a detailed process-based 

cost model of automotive general assembly. This section contains a high-level overview 

of the model’s characteristics. The calculations described assume that the assembly plant 

is dedicated to the production of a single type of car; small additions to the model will be 

proposed in later sections to account for multiple vehicle production. It is also relevant to 

note here that, for the most part, the assembly plant described by the model is assumed to 

have a single assembly line. Scaling with production volume happens in a serial fashion; 

that is, as production volume increases, the time spent at each station on the line (the 

cycle time) decreases, and the number of stations in series on this line increases.  

Although the description is made at the level of the entire assembly process, the actual 

model implementation allows the user to divide the plant into multiple sub-processes, or 

groups (indexed on g), each of which can be assigned distinct operational variables. The 

concept of groups is illustrated below in Figure 5. The total process cost is simply the 

sum of the individual group costs, i.e.: 

 ,total total g
g

C C=∑  (4.2) 

This partitioning of the process allows for more resolution in model results, and enables 

taking into account inefficiencies that occur in a realistic plant where assembly is not 

single continuous process due to physical precedence and facility layout related 

constraints. For simplicity and clarity of presentation, group indices will be omitted from 

most of the description, and subsequent analyses are to compute the resource 

requirements and costs per group. Variables relating to content, as well as conveyor costs, 

station space, and wage rates, are implemented as group-specific parameters.  

It is also worth noting that the model as described excludes material costs (i.e., the cost of 

the components which are assembled into a vehicle), which, in the case of automotive 
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general assembly, can be so high as to cloud the analysis of the assembly process itself. 

Implicitly, this approach assumes that material costs are independent from process 

changes that are being investigated. This assumption is largely reasonable, since in 

automotive assembly entire cars are rarely rejected and scrapped. Instead, outgoing 

products undergo a rework process to eliminate unacceptable defects. Future work should 

explore if assembly process changes have significant effects on rework or component 

reject rates. 

4.1.2.1 Operations sub-model 

The general assembly cost model is first based on processing requirements of the product 

– more specifically, its work content (tcontent), which represents the value-added time 

required to assemble the components within one group. Value-added time is defined by 

most automotive firms as the time operators spend directly modifying the vehicle; by 

contrast, it excludes any time spent walking, reaching for parts, scanning bar codes, etc. 

Note that in the actual model implementation, work content can be specified at the group 

level.  

Work content is used to compute the unit manufacturing time (tmfg), which is the total 

operating time required to produce a single vehicle: 

 content
mfg rework

tt t
ValueAdded LineEff

= +
⋅

 (4.3) 

ValueAdded is the average percentage of value added time vs. non-value added time for 

the process. LineEff is a percentage value accounting for the average efficiency in line 

balancing, as well as for the addition of buffer stations and carriers. Inefficiencies in line 

balancing occur because many tasks are indivisible, and therefore the cycle time available 

at a single station can rarely be occupied fully by active work. Moreover, inefficiencies in 

station counts are added buffer stations and carriers, which are used for various purposes, 

such as preparing for future reordering of tasks, or protecting against a full-line stoppage 

due to a short single station breakdown. The parameter rework is the amount of time 

required to rework defective products. This amount of time depends on the number of 
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defects found per vehicle (defects), and the average time needed per defect repair (trepair):  

 rework repairt defects t= ⋅  (4.4) 

The unit manufacturing time can be used to compute the number of simultaneous 

operations (ops) (illustrated in Figure 5 below) that the line must be divided into in order 

to produce the target annual volume V: 

 mfg

avail

t V
ops

t
⋅

=  (4.5) 

where tavail is the annual amount of time available per operation; and V is the production 

volume. The plant available time is represented in Figure 4. Note that in this figure, it is 

assumed that there are no “other parts”, and that idle time is zero.  

Analyzed
Part

Mfg. Time

Other
Parts

Mfg. Time
Idle

Unplanned
Breakdowns

Paid
Breaks

Unpaid
Breaks

On Shift
Maint. No Shifts

Line Utilization for a 24 hour day

Available Unavailable

DowntimeUptime

 

Figure 4: Available operation time based on a 24 hour day clock (Fuchs, Bruce et al. 2006) 

It is therefore defined as: 

 (24 )avail NS UD PB UB OSMt days t t t t t= ⋅ − − − − −  (4.6) 

where days is the number of days of plant operation during the year; tNS is the daily time 

during which no shift is held; tUD is the time when unplanned breakdowns (unplanned 

downtime) occur; tPB accounts for paid breaks; tUB accounts for unpaid breaks; and tOSM 

accounts for on-shift maintenance.  
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From the number of operations in (4.5), simple factors are used to compute the number of 

direct operators (Lop) and the number of workstations required in the plant: 

 opL ops OperatorDensity= ⋅  (4.7) 

 stations ops StationDensity= ⋅⎡ ⎤⎢ ⎥  (4.8) 

where OperatorDensity is the average number of operators required per operation, and 

StationDensity is the inverse of the average number of operations per workstation. Both 

of these concepts are represented in Figure 5.  

Group 2Group 1

c c

op1
op2 op3 op4 op5 op6 op7

op8 op9 op10

Operator Workstation

OperatorDensity = 1.1, StationDensity = 0.8

Group 2Group 1

cc cc

op1
op2 op3 op4 op5 op6 op7

op8 op9 op10

Operator Workstation

OperatorDensity = 1.1, StationDensity = 0.8  

Figure 5: Schematic representation of the concepts of groups, stations, operations and operators 

The total number of direct workers (direct labor, Ldir) for the plant is calculated from the 

number of operators by adding on a proportionate number of team leaders and absentee 

replacement workers: 

 (1 )dir opL L LeadRatio AbsRatio= ⋅ + +  (4.9) 

Indirect labor (Lind) is also modeled to be proportional to direct labor. The model 

differentiates between indirect workers dedicated to material handling (Lmat), and those 

doing quality checks and repairs (Lqual). The latter depends on the amount of rework 

needed. The number of indirect workers is given by: 
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 ind mat qualL L L= +  (4.10) 

where: 

 mat dirL L MatRatio= ⋅  (4.11) 

 rework
qual dir

mfg

tL L QualRatio
t

= ⋅ ⋅  (4.12) 

In addition to labor requirements, the model computes building requirements with respect 

plant area. Total plant area (Aplant) is composed of areas for process (Aprocess), material 

storage (Amat), and general plant facilities (Agen) like offices and cafeterias: 

 plant process mat genA A A A= + +  (4.13) 

The process area is occupied mainly by workstations, and it is given by: 

 process stationA stations A= ⋅  (4.14) 

where Astation is the average area per workstations, which includes space for conveyors, 

operators, line-side material storage, and aisles. The material storage area has a fixed 

portion (Amat-fixed) – representing space which is used to package components, unload 

deliveries, carry components between storage spaces and the assembly line, etc. – and a 

portion that scales proportionally to the process area: 

 mat mat fixed processA A A MatAreaRatio−= + ⋅  (4.15) 

General plant area, on the other hand, scales with labor: 

 ( )gen dir indA L L GenAreaRatio= + ⋅  (4.16) 

Finally, the energy requirement for the plant takes into account the power needed to 

operate equipment, conveyors, and the facility itself: 
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 ( )equip conv build plant mfgenergy E E stations E A t V= + ⋅ + ⋅ ⋅ ⋅  (4.17) 

where Eequip is the total power requirement of all equipment in the plant; Econv is the 

average power requirement of the assembly line conveyor for one workstation, and Ebuild 

is the power consumption per unit area of the facility. 

4.1.2.2 Financial sub-model 

The next part of the PBCM constitutes the financial model, and applies factor prices to 

the resource requirements described above. It also allocates cost over time and production 

to compute a unit cost per part produced. The annual costs in the model presented here 

are divided into seven categories: 

 total labor overhead energy building equipment conveyor maintenanceC C C C C C C C= + + + + + +  (4.18) 

First, the annual labor cost is obtained by applying the appropriate hourly wage (pdir) to 

the number of paid direct person-hours: 

 labor dir paid dirC L t p= ⋅ ⋅  (4.19) 

where tpaid  is the annual paid time, as per Figure 4. That is, 

 (24 )paid NS UBt days t t= ⋅ − −  (4.20) 

Similarly, the overhead cost is given by the cost of indirect labor: 

 overhead ind paid indC L t p= ⋅ ⋅  (4.21) 

where pind is the indirect labor wage rate. 

The energy cost is obtained by scaling energy consumption by a unit energy price penergy: 

 energy energyC energy p= ⋅  (4.22) 

Building, equipment, and conveyors are considered to be capital investments. In 
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order to incorporate these investments into a unit cost, the financial model distributes 

them across time by determining a series of annual payments which are financially 

equivalent to the initial investment. The distribution is done over the useful life of the 

building, equipment or conveyor in question, and applies a common discount rate. The 

capital recovery factor CRFi (where the index i is used to represent building, equipment, 

or conveyor) used to determine annual payments is therefore: 

 (1 )
(1 ) 1

i

i

L

i L
r rCRF

r
+

=
+ −

 (4.23) 

where r is the annual discount rate and Li is the useful life in number of years.  

The model considers that building investment scales with the area of the plant using a 

factor investment per unit area (CAPbuild), i.e.: 

 building plant build buildC A CAP CRF= ⋅ ⋅  (4.24) 

In a similar manner, conveyor investment scales with the number of workstations in the 

plant, where CAPconv: 

 conveyor conv convC stations CAP CRF= ⋅ ⋅  (4.25) 

Equipment investment varies within the model in a step-wise manner with line-speed and, 

therefore, production volume. This represents the fact that a set of equipment may only 

be appropriate for a particular range of line speeds, and changes in the equipment 

selection may be required at other line speeds. The equipment cost is therefore: 

 ,equipment equip V equipC CAP CRF= ⋅  (4.26) 

 where CAPequip,V  is the capital investment for the set of equipment required at volume V. 

Finally, the cost of maintenance for the facility, the equipment and the conveyors is 

computed as a proportion of each initial investment (represented as MaintRatioi), in 

addition to wages paid to specialized labor dedicated to the maintenance and repair of 
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equipment and conveyors: 

 ( )maintenance paid maint equip conv i i
i

C t p L L stations MaintRatio CAP= ⋅ ⋅ + ⋅ + ⋅∑  (4.27) 

Here, Lequip is the number of workers dedicated to equipment maintenance, and Lconv is the 

number of workers required for conveyor maintenance per workstation. 

Finally, these annual costs can be used to compute a unit cost per part (U): 

 total
total

net

CU
V

=  (4.28) 

The production cost obtained from the PBCM can be examined in a number of different 

ways. Individual cost categories and sub-processes can be compared to identify primary 

cost drivers. Sensitivity analyses on various process parameters can also be performed to 

further characterize their impact on system and cost behavior. A detailed level of 

sensitivity analysis is possible because the model derives cost from technical information 

defined at the process level, rather than using statistical methods to determine cost 

directly from the part description. This makes it a powerful tool to understand the effects 

and interactions of the different technical parameters which impact manufacturing cost. 

4.2 Dynamic PBCM: Incorporating Learning Curves 

In this section, a method will be presented for expanding the use of PBCMs to address the 

question of cost evolution with time, and particularly through learning. 

4.2.1 Dynamic PBCM Framework 

Because the PBCM considers a number of technical or process parameters in its cost 

calculation, it is possible to investigate the impact on cost if these vary over time through 

learning by doing. As mentioned in a previous section, learning effects have been 

observed directly for operational characteristics such as yield and speed of production. In 

the framework presented here and illustrated in Figure 6, this effect is incorporated by 
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applying a learning curve to certain processing requirements such that they, as well as the 

resulting cost, effectively vary with cumulative volume. 

 

Figure 6: Modified framework for a dynamic PBCM incorporating learning effects 

The parameters chosen here to investigate learning effects are manufacturing time (tmfg), 

unplanned downtime or breakdowns (tUD), and the defect rate (defects). Learning effects 

have been observed in previous literature for operational variables which are either 

equivalent or comparable in nature, such as speed of production, plant reliability, and 

yield. In addition, these are parameters for which the data collected show distinct 

improvement over time. They are not meant to form an exhaustive list of the parameters 

included in the model which are impacted by learning. Rather, they represent a few 

examples of such characteristics, chosen in the interest of focusing and simplifying the 

analysis. 

4.2.2 Learning Curve Functional Form 

The functional form of the learning curve has been debated by many researchers and 

practitioners. However, Wright’s learning model, which consists of a log linear curve 

varying with cumulative volume, is by far the most commonly used (for examples of its 

application, see (Henderson 1972; Lieberman 1987; Argote and Epple 1990; Riahi, Rubin 

et al. 2004). It is also the basis for the learning curve functional form adopted in the 
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present work. 

The learning model proposed by Wright uses cumulative production volume as the only 

factor responsible for learning and cost reduction. Many later studies have indeed 

identified cumulative volume as the best proxy for learning. Rapping (Rapping 1965), in 

a World War II shipbuilding study, statistically tested cumulative production and 

calendar time as explanatory variables for learning. He found that although the two 

parameters were statistically significant when used individually, cumulative volume 

“survived” calendar time when both included in the model. Lieberman (Lieberman 1984) 

observed similar trends after he analyzed the three-year price change of thirty-seven 

chemical products. He examined several candidate explanatory variables for learning 

such as time, cumulated industry output, cumulative industry capacity, annual rate of 

industry output, average scale of plant, rate of new plant investment, rate of new market 

entry, and level of capacity utilization. Statistical tests revealed that cumulative industry 

output was the single best proxy for learning. Cost reductions were also statistically 

linked to cumulative investment and scale economies, although the latter had a much 

weaker effect. Stobaugh and Townsend (Stobaugh and Townsend 1975) came to similar 

findings when studying the price change over time of eighty-two petrochemical products 

as a function of number of competitors, product standardization, experience and static 

scale economies. They concluded that for a petrochemical’s market of three or more 

competitors, experience has a stronger effect on price than the other three factors. 

Wright’s learning curve has a log linear shape defined by two parameters: a, which 

determines the initial value of the function at a volume of 1, and b, which defines the 

learning rate. Other learning curve geometries have been applied and discussed in the 

literature, and were reviewed by Yelle (Yelle 1979). Wright’s model was used for this 

paper, not only because it is the most widely applied, but also because it provided the best 

fit when statistically tested against available data for the current study. Conceptual 

weaknesses of the log linear model include the lack of initial transient and final saturation 

phases, which are sometimes observed in learning behaviour. It is also counter-intuitive 

that any process parameter could improve indefinitely, rather than eventually reaching a 
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best value or approaching it asymptotically. However, the initial transient phase described 

by other models was absent from the data used in this study. The steep slope which is 

displayed by the log linear curve at very low cumulative volumes was not representative 

of the data either, but it is possible to remove it by setting a maximum value to which the 

parameter is limited, as in Figure 7. In addition, the lack of a final saturation phase and 

the indefinite parameter improvement issues can be addressed by setting a minimum 

value for each parameter beyond which the curve becomes flat and learning no longer 

occurs. Similar cut-offs have been suggested for learning models of various functional 

forms (see (Kar 2007)).  

 

Figure 7: (a) Log linear curve without saturation; (b) Log linear curve with maximum and minimum 

saturation levels 

The modified log linear curve shown in Figure 7(b) was applied to the three process 

parameters mentioned above in order to produce a dynamic process-based cost model, 

which outputs cost as a function of cumulative production volume.  

4.2.3 Learning Curve Definition and Application 

Parameters a and b for the log linear portion of the learning curve were determined via 

least-squares regression for Wright’s model in the form: 
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 ln( ) ln( ) ln( )t tY a b V= + ∗  (4.29) 

where Yt is the value of the process parameter for which learning occurs, at time t (in 

months); and Vt is the cumulative volume produced at time t. The sets of data used for 

these regression analyses represented monthly average values for cycle time, unplanned 

downtime, and reject rates observed in a tube hydroforming process over several years.  

It is possible to apply the same learning pattern (as defined by a and b) to multiple 

process parameters which take various ranges of values. This can be done by setting the 

maximum and minimum saturation levels as described above, and normalizing the 

learning curve output. For a maximum parameter value of Ymax and minimum of Ymin, the 

normalized curve is: 

 * min max min

max min

min(max( , ), )b
t

t
aV Y Y YY
Y Y

− −
=

−
 (4.30) 

where Yt
* is the normalized learning curve output, with 0 < Yt

* < 1. In this model, the 

parameter b defines the learning rate, or timing. A high value of b indicates fast learning 

with respect to cumulative volume. The values of Ymax and Ymin determine the learning 

scope, or the magnitude of the improvement that can be achieved. Scope can be defined 

as (Ymax-Ymin)/Ymax. 

4.3 Valuation of Learning-Driven Flexibility 

As discussed in section  2.2.3, many approaches have been proposed for the valuation of 

flexibility. In his review, Borison suggests (Borison 2005) an integrated approach 

distinguishing between public and private risks within private investments (see Table 3). 

Risks considered here pertain to demand for a particular product, and will be considered 

private. Therefore, following his approach, the valuation method used will combine a 

cash flow model with decision tree analysis, using subjectively estimated probabilities. 

As these probabilities are hypothetical, sensitivity analyses will be performed to 

determine their impact on decision-making. The cash flow model presented here will 
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incorporate learning effects in order to value labor flexibility. 

4.3.1 Cash-flow model 

The cash-flow model is used here to compute the present value of costs under a given 

scenario of future demand.  

4.3.1.1 Net Present Value of Costs 

The costs are computed at the level of individual products (indexed in p) within specific 

plants (indexed in q), and summed.  In other words, the net present value of the cost of 

production for an entire system comprising multiple products and plants is:  

 tot pq
p q

NPV NPV=∑∑  (4.31) 

The following equations are applied for every pq combination individually. However, for 

simplicity, these indices will be omitted from most of the model description. 

The model is based on unit costs assuming that the capital investments are amortized as 

in section  4.1.2.2. Unit cost figures are calculated at every time period s = 0, 1, 2, …, 

smax, where periods are spaced by a constant time step Δ, in years. The time elapsed since 

the beginning of production is therefore: 

 t s= Δ ⋅  (4.32) 

Every period is associated with a given demand volume Vs, which is a fraction of the 

corresponding annual production volume AVs: 

 s sV AV= Δ ⋅  (4.33) 

Since revenues are excluded from the model, at every time period, the period’s cash flow 

is equal to the cost of producing this volume: 
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 s s sCF C V= ⋅  (4.34) 

where CFs is the cash flow (cost of production) for period s; and Cs is the unit cost of the 

product, in the considered plant, at period s. The determination of this unit cost 

incorporates learning effects as well as the more traditional concept of flexibility up-

charges. This will be discussed in the following section. Following (4.34), the net present 

value of the production costs (for a particular product in a specific plant) at time 0 is: 

 
max

0 (1 )

s
i

i
i

CFNPV
r Δ⋅

=

=
+∑  (4.35) 

where r is the annual discount rate. Similarly, the net present value of future costs can be 

determined at any period s: 

 
max

( )(1 )

s
i

s i s
i s

CFNPV
r Δ⋅ −

=

=
+∑  (4.36) 

The NPV at period s is used to evaluate decisions that are not made initially, but can 

instead be delayed to that period. Note that because the model only considers costs, lower 

values of NPV will be preferred for the purpose of decision-making. 

4.3.1.2 Unit cost with learning and up-charges 

A product’s actual unit cost Cs depends on the level of learning which has been achieved: 

 *
max, min, min,( )s t s s sC Y C C C= ⋅ − +  (4.37) 

The normalized learning fraction Yt
* is calculated as in (4.30), for given learning curve 

parameters a, b, Ymin and Ymax, and with Vt = CVs, which is the cumulative volume at each 

period and determines the current position on the learning curve: 

 
0

s

s i
i

CV V
=

=∑  (4.38) 

Cmin,s and Cmax,s are the minimum and maximum saturation levels of the learning 
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curve, and are related by the scope of learning improvement possible for the product of 

interest:  

 min, max, (1 )s sC C Scope= ⋅ −  (4.39) 

The maximum unit cost is composed of operational and capital expenditure portions: 

 max, , ,s cap s op sC C C= +  (4.40) 

Each portion takes into consideration a base cost figure, as well as any potential 

flexibility up-charges: 

 , (1 )cap s cap s initC B Flex CapUp Flex CapInit= ⋅ + ⋅ +  (4.41) 

 , (1 )op s op s initC B Flex OpUp Flex OpInit= ⋅ + ⋅ + ⋅  (4.42) 

Bcap and Bop are the base unit cost figures attributable to capital expenditure and 

operational expenditure, respectively. Flexs and Flexinit are binary variables indicating 

whether a plant is flexible (able to produce multiple products) or inflexible. Flexinit is 

non-zero only if the given plant is initially flexible, i.e. at period 0: 

 0max(0, min(1, 1))initFlex n= −  (4.43) 

where n0 is the number of values of p for which Vpq0 is non-zero, where Vpq0 is the 

volume of a product p in plant q at period 0. In the case where the plant is initially 

flexible and Flexinit = 1, the initial capital and operational up-charges (CapInit and 

OpInit) are applied to the base cost. CapInit represents the initial flexibility upcharge on 

capital expenditures; it accounts for any additional equipment or building space which is 

required to accommodate more than a single product. OpInit represents the initial 

flexibility upcharge on operational expenditures; it accounts for any inefficiency in 

operations that is inherent to the production of multiple products, even without 

considering learning effects. 
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Flexs, on the other hand, indicates whether a plant has become flexible after its initial 

start-up: 

 min(0, max(1, 1))s s initFlex N Flex= − −  (4.44) 

where Ns is the maximum n, the number of values of p for which Vpqs is non-zero, in any 

period before period s. That is, 

 0 1max( , ,..., )s sN n n n=  (4.45) 

If Flexs = 1, on-going capital and operational expenditure up-charges (CapUp and OpUp) 

are applied. These up-charges are not necessarily equal to CapInit and OpInit, because 

introducing flexibility in a plant after it is built may have a different cost than 

implementing if from the start. 

Finally, the sum of the capital and operational portions of the base cost form the total 

base cost, which is effectively the initial (maximum) unit cost of the product in a non-

flexible plant: 

 0 max,0 0, if  1cap opC C B B B n= = + = =  (4.46) 

In order to differentiate capital-intensive from non capital-intensive products, it is also 

useful to define: 

 capB
CapEx

B
=  (4.47) 

where CapEx is the percentage weight of capital expenditures in the unit cost.  

4.3.2 Decision Tree Model 

The decision tree models the uncertainty in future demand for the various products 

considered, and evaluates the production decisions which can be made in this context 

using the cash flow model described above.  
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4.3.2.1 Demand scenarios 

The decision tree model considers that demand for individual products (Dp) evolves in 

stages. More specifically, the model in this work uses binary stages, where at each stage 

the demand is changed to a high (up, indexed in u) or low (down, indexed in d) value. 

Shifts to high and low values from any state are associated with probabilities Pu and Pd, 

where: 

 1u dP P+ =  (4.48) 

Figure 8 illustrates how demand for product p progresses at each stage through the binary 

tree. It is important to note that stages for the demand scenarios are not necessarily 

equivalent to the time periods used in the cash flow model. Indeed, a single demand stage 

can encompass multiple time periods, during which demand remains constant.  

 

Figure 8: Schematic tree of demand scenarios and associated probabilities 

Each shift in demand also corresponds to a decision point, when the production allocation 

scheme can be modified.  
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4.3.2.2 Allocation decisions 

The decision occurring at every stage consists of allocating the required volume of each 

product to specific plants. This can be viewed as implementing a product-to-plant 

allocation matrix such as the one represented in Figure 9, where Vpq is the production 

volume of product p in plant q for a particular stage.  

1 2 … q

1 V11 V12 …

2 V21 …

… …

p Vpq

Plant

Pr
od

uc
t

 

Figure 9: Schematic of a generic product-to-plant allocation matrix 

At every stage, the allocation scheme must meet a number of constraints. First, the 

demand for every product must be met, i.e.: 

   p pq p
q

V V D p= = ∀∑  (4.49) 

In addition, the production of each plant cannot exceed that plant’s capacity (capq) for 

products 1 through p, i.e.:  

   q pq q
p

V V cap q= ≤ ∀∑  (4.50) 

4.3.2.3 Valuation 

The allocation decision is can made at every stage in order to minimize the expected NPV 

of costs at the current time period. For example, at the 0th stage, the expected NPV 

(ENPV0) will be evaluated for a number of allocation matrices, and the lowest ENPV plan 

will be implemented until the next decision point. For the tree in Figure 8, the ENPV at 
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stage 0 is: 

 
0 1 2 0 0 1 2 1 2 0 0 1 2

1 2 0 0 1 2 1 2 0 0 1 2

1 2 0 0 1 2
( , ) ( , )

( , , ) ( , , )
( , , ) ( , , )

( , , )

u uu u uu u ud u ud

d du d du d dd d dd

i ij i ij
i u d j u d

ENPV P P NPV D D D P P NPV D D D
P P NPV D D D P P NPV D D D

P P NPV D D D
∈ ∈

= ⋅ ⋅ + ⋅ ⋅
+ ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅∑ ∑
 (4.51) 

where NPV0(X) values are given by the cash flow model from  4.3.1 for the demand 

scenario described by X; stage 1 outcomes are indexed in i; and stage 2 outcomes are 

indexed in j. For future stages, the allocation decision may depend on which demand state 

actually materializes. For example, for a 1st stage decision occurring at time period s, if 

the demand is high, the allocation decision will be made to minimize: 

 1 2 1 2 2 1 2( , ) ( , )u uu s u uu ud s u udENPV P NPV D D P NPV D D= ⋅ + ⋅  (4.52) 

A similar procedure applies if the demand at stage 1 is low.  

An important note to make about this valuation method is that it takes into account the 

fact that unit costs are path dependent when learning is considered. For example, even if 

D2ud = D2du, the unit cost applicable in that state would depend on the demand levels and 

allocation decisions which were in effect in the previous state, and on whether any cost 

learning has occurred. Many flexibility valuation methods – binomial lattices, for 

instance – make assumptions of path independence which are not applicable when 

learning is involved. If learning is ignored, however, the method used here becomes path 

independent. This can be done by initially setting unit costs to their optimal value (Cmin), 

the learning scope (Scope) to zero, and learning rates (b) to zero. Unit costs then cease to 

be a function of previous production volume, and simply depend on whether the plant is 

flexible in its current state.  

This method ultimately provides a set of optimal (expected cost-minimizing) decisions to 

be implemented. The set of decisions chosen under path dependent conditions can be 

compared to the baseline decision set, which is optimal when no learning is considered 

(i.e. for the path independent approach), to determine whether the inclusion of learning 
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effects in the analysis has the potential to change allocation decisions. Of particular 

interest here is the question as to whether more flexibility is introduced (i.e. more plants 

are allocated multiple products) when learning effects are considered with the path 

dependent approach. The value of this flexibility can then be computed as the difference 

in ENPV of costs between the baseline, path independent decision set, and the new, path 

dependent, optimal decision set.  
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5 Learning in General Assembly 

In the following chapter, the dynamic PBCM approach described above is used to 

characterize and evaluate learning in the context of an automotive general assembly plant. 

First, the shape of the learning curve is determined for each process parameter examined. 

The chosen learning patterns are then incorporated in the PBCM, allowing the analysis of 

their individual and combined impacts on unit cost. 

5.1 Learning curve parameters 

Two and a half years of monthly data on production volume, hours worked, and defect 

rates for an automotive assembly production line were used to determine learning curve 

parameters via least-squares regression, as described in section  4.2.3. The fitted curves 

are shown in Figure 10 and Figure 11. 
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Figure 10: Log linear regression of defect rate data vs. cumulative volume 
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Figure 11: Log-linear regression of hours worked per car vs. cumulative volume 

Resulting model parameters a and b for each of the two data sets, as well as the adjusted 

R2 statistic for both regression analyses, are summarized in Table 5.  

 a b Adjusted R2 

Defect rate 4494.2 0.2869 0.8126 

Hours worked 593.4 0.3196 0.7338 

Table 5: Summary of log linear learning curve parameters 

No data were available to directly perform a regression on downtime or manufacturing 

time; however, the data on the number of hours worked effectively includes downtime as 

well as production uptime. Therefore, for the purposes of this study, it was assumed that 

both the manufacturing time and the downtime parameters experienced the same learning 

pattern that was determined by the regression on hours worked data, after normalization 

of the learning curve. The maximum and minimum saturation levels used to normalize 

each process parameter’s learning curve are shown in Table 6. Minimum values were 

based on best practice estimates obtained from discussions with experts in the field, 
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while scope and corresponding maximum values were determined from the regressed 

data. 

Process parameter Ymax Ymin Scope 

Manufacturing time (tmfg) 27.3 4.9 82% 

Unplanned downtime (tUD) 4.5 0.8 82% 

Defect rate (defects) 530 110 79% 

Table 6: Summary of process parameter maximum and minimum saturation levels 

The learning patterns were inserted into the general assembly process-based cost model 

described in section  4.1.2, resulting in a cost figure which varied with cumulative 

production volume. Other inputs to the cost model were chosen to reflect the operating 

conditions of a high-volume North American automotive plant.  

5.2 Dynamic PBCM Results 

Model output suggests that the unit cost of a vehicle would experience more than a 80% 

reduction over a cumulative production of approximately 400,000 units, when learning 

effects in the three process parameters mentioned above are combined. Because learning 

is applied at the operational level in the PBCM, contributions to cost improvement from 

learning in individual process parameters can be isolated as in Figure 12.  

It is interesting to note that the combined learning effect is not simply the sum of the 

learning effects from each of the individual parameters. While individual cost savings 

sum up to over $5,600 after 400,000 vehicles produced, the combined learning only 

generates a unit cost saving of $4,500 over the same period. The underlying relationships 

of the dynamic PBCM allow the user to examine this combined learning effect while 

taking into account the fact that improvements in a certain parameter may undercut 

improvements in others, leading to less cost learning than would sometimes be expected 

from a direct cost analysis.  This occurs because the learning effect within the cost model 
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is often multiplicative instead of additive; for example, tmfg and tUD are effectively 

divided in (4.5). With a multiplicative effect, a 10% improvement in one parameter along 

with a 20% improvement in another will lead to a total improvement of: 

 1 (1 0.1)(1 0.2) 0.28− − − =  (5.1) 

Thus the cost would be reduced by 28% instead of an additive 10% + 20% = 30%, as 

could be expected at first glance. 

900

1,400

1,900

2,400

2,900

3,400

3,900

4,400

4,900

5,400

5,900

0 100 200 300 400 500
Thousands

Cumulative volume

U
ni

t c
os

t o
f a

ss
em

bl
y 

($
/c

ar
)

Combined
Defects
Downtime
Mfg time

 

Figure 12: Total cost improvement through learning with increasing cumulative production volume, 

by process parameter 

The analysis represented in Figure 12 would indicate that for the assembly process the 

majority of the cost improvement comes from learning on manufacturing time. This 

suggests that this is the metric that managers and engineers should focus on improving in 

order to gain maximum cost impact. Manufacturing time learning has a larger impact 

despite relatively similar scope of learning to the other two parameters. This can partly be 

explained by the fact that manufacturing time has more influence on actual production 

time than downtime or rework time: while downtime takes up approximately 5-10%, 
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and rework time requires 10-20%, of a plant’s operating time, manufacturing time 

determines the use of approximately 70-85% of available time.  

The use of a process-based cost model also enables the analysis of the process’ cost 

structure. Figure 13 shows that labor and overhead constitute the major part of unit 

assembly cost, but that this proportion diminishes as learning increases. As expected, 

Figure 14 shows that learning has the most impact these same cost elements. However, 

while reductions in time requirements have a direct impact on how much labor is needed, 

it also improves utilization of non-dedicated resources such as equipment and building. 

As the time required to produce the desired volume is reduced, these resources can be 

used for other production, and the portion of their cost allocated to the product of interest 

is reduced. 
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Figure 13: Unit cost variation with cumulative production, by cost category 
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Figure 14: Cost improvement from learning, by cost category 

In a case where the plant considered is dedicated to a single product, the equipment time 

and building area that become available as learning progresses will not be used to 

produce another vehicle. The cost allocated to the first product due to initial investment 

therefore remains constant across time. The resulting cost learning curve for a dedicated 

plant is shown in Figure 15; the cost savings due to learning are reduced from $4,500 to 

$4,200 over a cumulative volume of 400,000 cars.  
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Figure 15: Unit cost learning by cost category for a dedicated assembly plant 

5.3 Cost learning characterization 

The total cost learning rate for the process can be characterized by the same log-linear 

model by using regression analysis as in  4.2.3, for the modeled unit cost curves. The 

learning model parameters obtained are reported in Table 7, for both dedicated and non-

dedicated plants.  

 a b Adjusted R2 

Non-dedicated plant 6290.9 0.1374 0.9262 

Dedicated plant 6067.8 0.1177 0.9445 

Table 7: Total unit cost learning curve parameters 

It is also possible to analyze the sensitivity of the overall cost learning rate to operational 
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parameters by varying the underlying learning rates. Figure 16 shows cost learning curves 

for various rates of learning applied to manufacturing time and downtime. The rates of 

learning were obtained via regression for each of these curves, and are plotted in Figure 

17. 
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Figure 16: Cost learning curves at varying learning rates for manufacturing time and downtime 
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Figure 17:  Sensitivity of modeled cost learning to manufacturing time and downtime learning rates 

The total cost learning rates obtained range from b = 0.02 to b = 0.14. Although the 

learning rate which will be used in the analyses of the next section will be the base value 

of b = 0.137 obtained earlier, sensitivity analyses will also examine the impact of varying 

the learning rate within such a range. In particular, the impact of the learning rate on the 

value of labor functional flexibility will be investigated. 
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6 The Impact of Learning-Driven Flexibility 

As noted in previous literature (Fry, Kher et al. 1995; Yue, Slomp et al. 2008), the 

existence of the learning effect in manufacturing implies that labor, as well as other 

operational expenditure-related resources, are not inherently functionally flexible; that is, 

they are not able to produce any new product immediately at optimal cost or 

performance. However, the learning effect also implies that this full flexibility can be 

acquired through experience, at the price of producing an initial output at higher-than-

optimal cost, or lower-than-optimal performance. As with any type of flexibility, it is 

expected that the cost of acquiring it can be partly or entirely offset by benefits in the face 

of uncertainty. 

The following stylized case study on automotive general assembly attempts to define 

conditions under which the benefits of acquiring labor flexibility through learning can 

outweigh its cost. Because learning is not usually considered when valuing flexibility, 

conditions where learning-driven flexibility positively impacts economic outcomes are 

equivalent to conditions under which consideration of learning effects may also change 

traditional flexibility decisions. Here, the evaluation of learning-driven flexibility is done 

entirely from a production cost perspective; that is, a situation where benefits outweigh 

costs is considered to translate into expected direct cost savings due to flexibility (as 

opposed to increased revenue or profit). Future work could attempt to characterize 

potential revenue-side benefits of worker flexibility. The figures presented here thus 

likely represent conservative estimates of the value of worker flexibility. 

This chapter therefore attempts to demonstrate three points: (a) taking learning effects 

into account can lead to changes in product-to-plant allocation decisions; (b) these 

decision changes can involve increasing worker flexibility when considering uncertainty; 

and (c) learning theory can be used in conjunction with other tools to quantify the value 

of this increased flexibility.   
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6.1 Case assumptions and scenario definition 

This case study considers two automotive general assembly plants (plant 1 and plant 2), 

and three products: two novel vehicles (product A and product B) needing to be produced 

in those two plants, and a third vehicle with mature technology (product Z) which can be 

produced at minimum cost in either plant. The case is meant to represent a situation 

where an older product Z has been produced in those two plants for some time, and it is 

to be replaced by one of two technologies, product A or B. The decision to be made is 

whether to introduce product A and B in separate plants, or to have the plants each 

produce all three products A, B and Z. At the time when the allocation decision must be 

made, it is uncertain which of technology A or B will take off and eventually dominate 

the market segment.  

The decision must take into account the fact that producing all products in a single plant 

will result in somewhat higher capital investments (a flexibility up-charge), although this 

up-charge is reduced if flexibility is implemented when initially retooling the factory. If 

considering learning effects, a plant producing all three products will also increase costs 

because in such an allocation scenario, the production volume of each product in 

individual plants is reduced, which slows the accumulation of experience and thus, the 

cost learning process. The case presented here assumes that no learning transfer occurs 

between distinct plants or products – thus dividing the production volume of a single 

product between different plants has a slowing effect on learning. 

Although products and scenarios are hypothetical, cost figures and learning parameters 

used are the ones derived as described in chapter  0.  

6.1.1 Cash-flow model inputs 

The cash-flow model is described in section  4.3.1, and key inputs are summarized in 

Table 8. The figures reported are base values, and most will be subject to sensitivity and 

what-if scenario analyses in subsequent sections. 
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Input Symbol Value Unit 

Time period length Δ 0.125 years 

Number of periods smax 48 time periods 

Discount rate r 15% %/year 

CapEx initial flexibility up-charge CapInit 5% % of CapEx 

CapEx on-going flexibility up-charge CapUp 10% % of CapEx 

OpEx flexibility up-charges  0% % of unit cost 

Capital expenditure weight CapEx 20% % of unit cost 

Product A and B base cost B 5,500 $/unit 

Product A and B learning scope Scope 82% % of unit cost 

a 6291 $/unit 

b 0.137  

Ymax 6291 $/unit 
Learning curve parameters 

Ymin 1059 $/unit 

Table 8: Key cash-flow model inputs 

Note that a capital expenditure weight (CapEx) of 20% corresponds to approximately a 

$200 million capital investment per plant (for an annual production volume of 200,000 

vehicles). 

6.1.2 Demand scenario 

For the baseline demand scenario, let Product B start with a lower demand than product 

A (DA0 > DB0), but have a stronger potential for growth. It may eventually dominate 

almost the entire market segment, making product A disappear almost entirely. The total 

demand for both products is considered to be constant (Dtotal) at every stage of 
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production, that is: 

 As Bs totalD D D+ =  (6.1) 

for all time periods s. The demand for product Z is not represented; it is assumed to be 

large enough so that any available production time in plants 1 or 2 can be occupied by the 

production of product Z. Moreover, only the costs for products A and B will be 

considered in subsequent calculations.  

This type of scenario is examined here because it appears to be the most interesting from 

the point of view of flexibility implementation. A scenario where a product’s demand 

would initially be low and only possibly stay low or decrease would have little 

implications for the functional flexibility of the plants considered – only one plant would 

be required to make the product. Conversely, a scenario where the demand starts high and 

has the possibility to remain high or increase further would also only require that both 

plants analyzed be able to produce it. A third possibility, where demand would initially 

be high but have the possibility to decrease, is effectively the converse scenario of 

Product B in the base case described above – i.e. the product with high, but possibly 

decreasing, demand is Product A. 

The proportion of demand for B is the parameter which will define the demand scenario 

at every stage in the decision tree. This fraction will be labelled DF, such that: 

 Bs
Fs

total

DD
D

=  (6.2) 

The decision tree used will take on the form depicted in Figure 8, with three demand 

stages (including the 0th stage), and where the absolute demand variable Dp is replaced 

with the variable ratio DF.  

Defining demand scenarios in this manner has a number of advantages. First, it simplifies 

scenario definition by reducing the characterization of both products’ demand to a single 

variable. Second, while requiring that production volume equal demand may be 



 

 69

somewhat unrealistic (as demand often exceeds initial production for novel products), 

this simplifying assumption, along with the premise of a constant total demand and 

production volume, allows economies of scale to reasonably be neglected. And third, if 

both products are assumed to be sold at the same price, this approach can be viewed as 

providing constant revenue, such that any impact on costs is directly reflected in profits.  

Unless indicated otherwise, the total demand value used in the following analyses will be 

Dtotal = 400,000 units. The demand volume is distributed between the two plants, each 

having a capacity of 200,000 units for A and/or B. This level of demand is effectively a 

high volume scenario for modern automobile general assembly.  

The base scenario values used for both demand and probabilities at every stage are 

exhibited in their tree format in Figure 18. Demand stages have a length of two years, for 

a total time analyzed of six years, which is roughly the life cycle of most vehicle models 

in today’s market.  

 

Figure 18: Decision tree with base demand and probability values 
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6.1.3 Allocation decision sets 

Decision variables consist of the production volumes of each product which is assigned to 

each plant – effectively filling out a 2x2 allocation matrix as in Table 9 – at stages 0 

(t=0), 1 (t=2), and 2 (t=4). These decisions also happen independently for high and low 

demand states. As noted in section  4.3.2.2, the production volumes must meet all 

demand, and plant capacities cannot be exceeded.  

  Plant 

  1 2 

A VA1 VA2 

Pr
od

uc
t 

B VB1 VB2 

Table 9: Two-by-two generic allocation matrix 

6.1.3.1 Characterizing allocation decisions 

Because there are a large number of allocation decisions possible, it is useful to 

characterize and categorize them more broadly. First, a plant will be categorized as 

flexible at a particular point in time if it was allocated both products A and B in the past – 

i.e. plant q is flexible at period s if cumulative volumes CVAqs > 0 and CVBq > 0. Hence, at 

any point after a period where DF ≠ 0.5, at least one plant will need to be flexible in order 

to have accommodated all demand. This notion of flexibility refers mainly to worker 

functional flexibility as discussed previously, meaning that for a plant to be flexible, 

workers must be given the opportunity to learn how to make both products. Note that in 

fact, full flexibility (i.e. optimal cost for both products) will not be achieved as soon as 

the second product is assigned to the plant because of the time required for learning. 

However, this terminology will be used to simplify characterization of decisions with 

respect to plant flexibility.  

Further, an allocation scheme will be categorized as flexible if both plants 1 and 2 are 

flexible, i.e. if CVpq > 0 for all p and q. This will necessarily happen if the value of DF 
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goes from below 0.5 to above 0.5, or vice versa. For example, if DF is initially 0.3, it is 

possible to have a partially flexible allocation as in Table 10 (where plant 1 is non-

flexible and plant 2 is flexible). If from this demand level, DF then shifts to 0.7, at least a 

portion of plant 1 will need to be used for the production of vehicle B – thus necessarily 

making plant 1 flexible, since it had also been allocated vehicle A in the past (CVA1 > 0). 

  Plant 

  1 2 

A 200 80 

Pr
od

uc
t 

B - 120 

Table 10: Non-flexible allocation matrix for DF=0.3 (units in thousands) 

However, an allocation decision can also be termed “flexibility-forcing”, which will be 

used to describe allocations that result in the implementation of flexibility prior to the 

impetus from immediate external demand requirements.  For example, for an initial DF 

value of 0.3, a flexibility-forcing decision would allocate both products to both plants, as 

in Table 11.  

  Plant 

  1 2 

A 140 140 

Pr
od

uc
t 

B 60 60 

Table 11: Flexibility-forcing allocation matrix for an initial DF=0.3 (units in thousands) 

In addition, a flexibility-forcing allocation decision will be characterized in terms of 

“how much” flexibility if forces – specifically, the minimum demand portion of the low-

volume product which is allocated to what would normally be the non-flexible plant. This 

fraction will be labeled F, with 0 ≤ F ≤ 0.5; and it can be understood as a kind of 

flexibility index which accounts for the fact that full flexibility (here, F = 0.5) is not 
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required, nor is it, as will be shown later, always optimal.  For cases where DF < 0.5 (i.e. 

product B has lower volume than A) and plant 1 is designated as the normally non-

flexible plant, the volume of B allocated to plant 1 is determined by: 

 1B total FV D D F= ⋅ ⋅  (6.3) 

In Table 11, for instance, 50% of the lower-volume product B is allocated to plant 1 

(alternatively, plant 2), which could have been non-flexible under the allocation scheme 

shown in Table 10; hence, F = 0.5. For F = 0, the allocation scheme is not flexibility-

forcing. The base value for F used in most analyses will be 0.05; Table 12 illustrates the 

allocation matrix for DF = 0.3 and F = 0.05.  

  Plant 

  1 2 

A 194 86 

Pr
od

uc
t 

B 6 114 

Table 12: Flexibility-forcing allocation matrix for DF=0.3 and F=0.1 (units in thousands) 

6.1.3.2 Allocation decision scenarios 

Using the categorization described above, it is possible to define a finite number of 

decision scenarios, which represent the sets of allocation decisions made at each stage. 

More specifically, at each stage, the allocation can either be flexibility-forcing, or not. 

Then, for every set of inputs analyzed, the decision scenario with the least ENPV of costs 

is chosen. 

Although specific costs and benefits associated with flexible allocation will be discussed 

in later sections, it is expected that flexibility-forcing allocation decisions would 

introduce an extra cost – if only in terms of additional or more sophisticated equipment 

required to accommodate the additional product type – which is only offset by benefits if 

external demand can potentially require flexibility in the future. For this reason, no 
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flexibility-forcing decisions are expected to be made at stage 2 (t = 4) of the decision tree, 

when demand for the following two years is assumed to remain constant.  

Flexibility-forcing decisions are therefore reasonable only at stages 0 and 1, and they are 

what will define the set of decision scenarios evaluated. This set is described in Table 13 

in terms of the decision type made at every stage.  

Scenario Stage 0 Stage 1(high) Stage 1(low) 

I F = 0 F = 0 F = 0 

II F = 0  F > 0 F = 0 

III F = 0 F > 0 F > 0 

IV F > 0 F > 0 F > 0 

Table 13: Definition of decision scenarios - allocation type corresponding to every stage 

Scenario I corresponds an allocation scheme which will only be flexible if required by the 

evolution of demand – i.e. it will never be flexibility-forcing. Scenario II does not 

initially force flexibility, but does so if demand shifts to its “up” state in stage 1. Potential 

benefits of this scenario include the opportunity to resolve part of the demand uncertainty 

(will demand increase or decrease in year 2?) before making a costly flexibility-forcing 

decision. Decision scenario III forces flexibility in both states of stage 1; although it does 

not involve the benefits of resolving uncertainty, its potential benefit lies in the delaying 

of the flexibility decision, meaning that its costs are reduced after accounting for time 

value of money. Finally, scenario IV forces flexibility immediately from stage 0, 

allowing benefits to incur if, for example, flexible allocation is required by demand in 

stage 1. 

6.2 Base Case Analysis 

The following analysis is done with the input values listed above (except for learning 

parameters which are modified for the no-learning decision) to determine whether the 
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consideration of learning would change the decision made in this specific context, and 

how much value this change in decision could bring.  

6.2.1 Decision without learning 

In order to evaluate the implications of considering learning in flexibility decision-

making, it is necessary to construct a benchmark evaluation using a more conventional 

approach. For this purpose, the four decision scenarios will be evaluated for a context 

where both vehicles can already be produced at their optimal costs in either plant. To 

model this, the base cost for both products is modified to: 

 * (1 )B B Scope= ⋅ −  (6.4) 

Thus, the base cost is initialized at the minimum value on the learning curve; and the 

scope of learning (Scope) is set to 0%.  

The resulting expected net present values of the production costs for each decision 

scenario are reported in Table 14.  

Decision scenario ENPV ($million) 

I 1,617.1 

II 1,620.5 

III 1,624.0 

IV 1,623.2 

Table 14: ENPV by decision scenario without considering learning effects 

From these figures, scenario I is the decision with the least expected cost, and would be 

implemented. Thus, no flexibility would be introduced as long as external demand did not 

immediately require it. 

The extra costs incurred for scenarios II-IV are uniquely due to flexibility up-charges. For 

scenario II, on-going up-charges are applied only in the case of the high state for stage 1. 
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For scenario III, on-going up-charges are applied regardless of the state at stage 1. In 

scenario IV, up-charges are also applied regardless of the evolution of demand; the 

expected cost is reduced because initial up-charges are defined lower (by half) than on-

going up-charges 

6.2.2 Decision with learning 

By setting B and Scope back to their original values (see Table 8), the same decision 

scenarios are modeled while taking learning into account. The resulting ENPVs are 

shown in Table 15. 

Decision scenario ENPV ($million) 

I 2,014.0 

II 2,012.3 

III 2,013.9 

IV 2,016.4 

Table 15: ENPV by decision scenario, with learning effects 

First, from these results, considering learning effects has increased the ENPVs in general 

by approximately $400 million. This is because in the previous section’s results, unit 

costs were assumed to be at their optimal (i.e. minimum) level from the start, while in the 

latter results, unit costs are initially much higher than this optimal value.  

Second, it is interesting to notice that the lowest cost decision has now changed to 

scenario II. Furthermore, this decision change involves an increase in flexibility: from no 

flexibility-forcing allocation, the decision has moved to a potential flexibility-forcing 

situation if demand increases after 2 years.  

Lastly, by comparing the figures obtained for each scenario, it is possible to determine 

the value of having considered learning for this decision, which is also the value of 

introducing flexibility. If the decision is made without taking into account learning 
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effects, scenario I is chosen. Considering that learning effects will materialize even if 

decision-makers do not incorporate them into their analysis, the actual expected costs for 

this decision is $2,014 million. Therefore, considering learning effects and choosing 

scenario II yields a cost saving of: 

 $2,014,000,000 $2,012,300,000 $1,700,000− =  (6.5) 

This $1,700,000 can also be viewed as the value of the flexibility introduced by scenario 

II. The value can be compared with the expected additional capital investment required to 

implement the flexibility, i.e. the amount of the capital up-charge incurred at t = 2 with 

probability p = 0.5. For a base capital investment of approximately $200 million, the 

expected additional investment for flexibility is: 

 2

($200 )(10%)(0.5)_ $7,56
(1 ) (1 0.15)t

Invest CapUp p MFlex Investment M
r

⋅ ⋅
= = =

+ +
 (6.6) 

The return on investment for the implementation of flexibility here is therefore: 

 $1.7 22.4%
$7.56

MROI
M

= =  (6.7) 

6.2.3 Conceptual definition of learning-driven costs and benefits of 
flexibility 

As is exemplified by the difference in ENPV between sections  6.2.1 and  6.2.2, the 

consideration of learning reveals a significant amount of cost which is simply ignored 

otherwise. In the previous base case example, this difference is approximately $400 

million. This cost is well illustrated by a curve similar to Figure 1, which is reproduced 

here in a slightly modified form (Figure 19): 
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Figure 19: Conceptual representation of the additional cost from considering learning effects 

The shaded area represents the additional cost considered, which is effectively: 

 
( )

(1 )
s opt s

add s
s

C C V
NPV

r
− ⋅

=
+ Δ ⋅∑  (6.8) 

where NPVadd is the additional NPV from considering learning; Cs is the unit cost in 

period s; Copt is the optimal unit cost; Vs is the period production volume; Δ is the length 

of each period in years (although Δ used here is less than a year); and r is the yearly 

discount rate. In addition, Cs varies with cumulative volume (here according to Wright’s 

log-linear model) such that: 

 0
( )

(1 )

s
b

i opt s
i

add s
s

a V C V
NPV

r

−

=

⎛ ⎞
⋅ − ⋅⎜ ⎟

⎝ ⎠=
+ Δ ⋅

∑
∑  (6.9) 

This cost is incurred for any new product, regardless of whether flexibility is 

implemented in the plant. However, introducing flexibility increases this cost by reducing 

the volume of each product in a plant, which slows the learning process. This additional 

cost is illustrated in Figure 20.  
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Figure 20: Conceptual representation of the cost of labor functional flexibility driven by learning 

Mathematically, the additional NPV of costs incurred due to labor functional flexibility 

can be represented as: 

 
0 0

(1 ) ( )

(1 )

bs s
b

i i s
i i

flex s
s

a V F V V

NPV
r

−
−

= =

⎛ ⎞⎛ ⎞
⋅ ⋅ − − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

+ Δ ⋅

∑ ∑
∑  (6.10) 

where F is the flexibility-forcing parameter defined in section  6.1.3, or the portion of the 

volume which is moved out of the plant. NPVflex can be compared to an option price, or 

the cost incurred to acquire functional flexibility in a given plant. 

The benefits of flexibility, in terms of cost savings (i.e. for an assumption of constant 

revenue), occur solely if the plant is required to become flexible in the long run. In that 

case, having acquired flexibility early on removes any learning costs which would be 

paid to start producing the product in the plant of interest. Essentially, if full learning has 

occurred before flexibility becomes required, the option strike price is zero, and the 

product can be produced at no additional cost (Figure 21(a)). On the other hand, if the 

additional product has not been introduced in the second plant, when flexibility becomes 
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required by demand, learning costs are incurred. These costs are represented by the dark 

shaded area in Figure 21(b), and can be mathematically represented as in (6.9). It is 

important to note that these costs are discounted because they occur later in time; and in a 

scenario where demand is uncertain, their expected value is also reduced by the 

probability that the flexibility will never be required in the considered plant.  
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Figure 21: Conceptual representation of the costs and potential cost savings from flexibility: (a) cost 

of flexibility-forcing approach over time; (b) cost of non-flexibility-forcing approach over time; (c) 

cost difference between (a) and (b) 

The difference between the expected costs of the two approaches yields the value of 
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flexibility forcing. This difference is conceptually plotted against time in Figure 21(c), 

which displays the trade-off between the additional learning costs incurred now from 

flexibility-forcing, and potential (uncertain) cost savings occurring the future. 

6.3 Influence of learning on the value of flexibility 

In this section, the value of flexibility when learning effects are considered is compared 

to the perceived value of this flexibility when learning effects are ignored, and unit costs 

are assumed to immediately reach their steady-state, optimal value. 

6.3.1 Value of flexibility without learning 

Although the general assembly process is labor-intensive, it also involves capital 

investments, which grow with the number of products being produced in each plant. In 

the cash-flow model, this effect is captured by the capital expenditure up-charge 

parameters (CapInit and CapUp) that increase the capital expenditure portion of unit cost 

when a plant is made flexible. As mentioned before, the two distinct parameters are used 

to reflect the fact that building flexibility features into a new plant (greenfield) is often 

less expensive than retrofitting them into an already existing plant (brownfield). For this 

reason, it is most likely that CapInit < CapUp.  

If the ratio CapUp/CapInit is large enough, it is therefore possible that a decision based 

on the perceived cost calculated without consideration of learning would involve 

flexibility-forcing at stage 0. This would be done in order to protect against potential 

demand scenarios where flexibility would be required later on, and the large CapUp cost 

would need to be incurred. Although this decision would not involve any consideration of 

labor flexibility, under certain conditions of the stylized case study, the flexibility 

embodied in decision scenario IV would have a positive perceived value. This is 

illustrated in Figure 22, where after CapUp surpasses a certain threshold, decision IV 

becomes preferred and the value of flexibility starts increasing linearly. In this figure, 

CapInit is held at 5%, and learning is eliminated, i.e. unit costs are set at their optimal 
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level as in Eq. (6.4) and scope is reduced to 0%.  
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Figure 22: The value of flexibility without consideration of learning, for varying on-going capital 

expenditure up-charge and discount rate. CapInit is held constant at its 5% base case value.  

As expected, the value of flexibility increases as CapUp increases with respect to 

CapInit. In addition, the value increases with decreasing discount rates, since at large 

discount rates, the present value of later costs incurred from the on-going up-charge is 

effectively reduced.  Note also that in this no-learning case, decision scenarios II and III 

do not add value: the value of the on-going up-charge is the same whether the flexibility 

is implemented in stage 1 or 2, and flexibility-forcing in stage 1 would simply bring costs 

forward, thus reducing the beneficial discounting effect. The advantage of flexibility-

forcing, without learning, only appears at stage 0, when the up-charge is less. 

6.3.2 No-learning vs. learning comparison 

If the same analysis is performed by varying CapUp while taking into account the base 

case learning parameters, the results shown in Figure 23 are obtained. 
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Figure 23: The value of flexibility when considering learning effects, for varying CapUp and discount 

rate. CapInit is held constant at 5%. 

As for the no-learning case, large CapUp values lead to decision IV, where flexibility is 

forced initially at stage 0 and the lower CapInit up-charge is incurred. For some values of 

CapUp and r, decision I is still preferred. However, unlike in Figure 22, at lower values 

of CapUp, decisions III and II become valuable: benefits from learning early, but still 

delaying the extra cost, start outweighing the additional up-charge incurred by not 

initially forcing flexibility. 

The difference between the two sets of results presented above indicates the additional 

value of flexibility which is captured by considering learning effects. This increase in 

value is plotted against the on-going flexibility up-charge in Figure 24. It is non-zero for 

almost all values of CapUp and discount rates considered, and it continues increasing 

even in regions where flexibility has a non-zero value without learning effects. This 

indicates that even in cases where the on-going capital up-charge justifies the 

implementation of flexibility in itself, considering learning effects still increases its value 
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faster as the capital up-charge increases.  

This added value of functional labor flexibility is present regardless of whether the 

process considered is labor- or capital-intensive. However, the importance of this value 

relative to the value conferred simply from additional capital investment requirements 

would be less for a process with high capital expenditures, and thus high CapEx up-

charges for flexibility implementation.  
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Figure 24: Added value of flexibility from learning effects vs. CapUp and discount rate. Flexibility 

has a non-zero perceived value without learning effects in the areas to the right of the dotted lines. 

For the right-most area of the graph where decision scenario IV is preferred, the 

investment required for the implementation of flexibility (which occurs initially at stage 

0) is given by: 

 _ ($200 )(5%) $10Flex Investment Invest CapInit M M= ⋅ = =  (6.11) 

Therefore, in such cases, the return on investment (at a discount rate of 15%) of 
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functional labor flexibility – isolated from capital flexibility – is: 

 $4.5 45%
$10

MROI
M

= =  (6.12) 

6.4 Sensitivity Analyses on Base Case 

From the base case presented above, a number of parameters can be varied to examine 

how decisions and their value would change depending on the operating conditions.  

6.4.1 Sensitivity to F parameter 

The value of F indicates how much of the volume of B is shifted to the second plant in 

flexibility-forcing situations. Effectively, it reflects how much flexibility is imposed by 

decisions II, III and IV, and impacts how much value can be added by this flexibility, as 

exhibited in Figure 25. 
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Figure 25: Sensitivity of the value of flexibility and optimal decision scenario to F 
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These results show that the chosen value for F not only affects the value of flexibility, but 

also changes the preferred decision. More interestingly, the curve in Figure 25 has a 

maximum value, here around 0.5%, indicating that there is an optimal value for F which 

maximizes the value of flexibility, and thus minimizes the expected NPV of costs. This 

indicates that full flexibility (represented by F = 0.5) is not always the optimal solution 

even when the presence of some flexibility is preferred. Because the F parameter is 

effectively set by the decision-maker, this is a direct lever which can be used to maximize 

the value of a flexible strategy.  

6.4.2 Sensitivity to learning parameters 

The learning parameters (rate and scope) used in the cash flow model can be expected to 

have a significant influence on the value of flexibility, which here is driven almost solely 

by learning effects. The parameters used in the base case analysis were derived from 

observed data, but sensitivity analysis showed that overall learning can vary significantly 

with variations in learning at the operational level (see section  5.3). The sensitivity of the 

value of flexibility to learning parameters is therefore examined here. 

6.4.2.1 Sensitivity to learning rate 

Figure 26 shows that there is a threshold learning rate below which no flexibility-forcing 

occurs, and flexibility has a value of zero. However, once that threshold is reached, 

results show that faster learning increases the value of flexibility. Although the increase is 

not linear, the approximate slope between b = 0.13 and b = 0.15 indicates a $1.7 million 

increase in value for an increase of 0.01 in learning rate. 
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Figure 26: Sensitivity of flexibility value and decision to learning rate 

Because, as mentioned above, learning rate is a parameter which can be impacted at the 

operational level, it can also be seen as a lever to be used by managers and engineers to 

increase the value of flexibility. As illustrated in Figure 17, a 0.01 increase in overall cost 

learning rate would approximately require a 0.01 increase in the learning rate for 

manufacturing time.  

6.4.2.2 Sensitivity to learning scope 

Figure 27 shows how the value of flexibility and the preferred decision scenario change 

with varying learning scope. As for the learning rate, there is a threshold scope below 

which flexibility does not add value. Beyond that threshold, the value appears to increase 

almost exponentially as scope increases.  
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Figure 27: Sensitivity of flexibility value and decision to learning scope 

Learning scope is strongly tied to the process’ cost structure (as shown in Appendix 1), 

suggesting that a learning-driven flexibility would have more value for a labor-intensive 

process than for a capital- or material-intensive process. Scope is also restricted by 

physical and operational limitations (e.g. physical limits to the speed of the equipment 

employed, minimum achievable rework rate). However, this sensitivity analysis indicates 

any improvements that could be made to augment this scope by improving the lower 

bounds of certain parameters at the operational level would have a significant positive 

impact on the ultimate value of flexible decisions. 

6.4.3 Sensitivity to cash-flow model parameters 

It can be expected that some parameters used in the cash-flow model will have a 

significant effect on the evaluation of flexibility. In particular, sensitivity analyses to 

discount rate and up-charge parameters are included here. 
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6.4.3.1 Sensitivity to discount rate 

As the discount rate increases, benefits of flexibility that occur later in time have less 

value in the present. Therefore, as expected, the value of flexibility decreases with 

discount rate as in Figure 28.  
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Figure 28: Sensitivity of flexibility value and decision to discount rate 

Within the range of discount rates considered, the value never reaches zero, and 

flexibility-forcing always occurs. The decision switches to the full flexibility option at 

very low discount rates. Although a fairly common figure, the 15% rate used in the base 

case can be considered somewhat high for the automotive industry. As shown here, using 

a rate of 5% would more than double the value of flexibility compared to the base case. 
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6.4.3.2 Sensitivity to capital flexibility up-charge 

Section  6.3.2 explored the sensitivity of the value of flexibility to the ratio of on-going to 

initial capital flexibility up-charges. The plot in Figure 29 shows how the value of 

flexibility and the associated decision varies with the initial capital flexibility up-charge, 

while the CapUp/CapInit ratio remains constant at 2.  
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Figure 29: Sensitivity of flexibility value and decision to initial flexibility up-charge (CapInit) 

As the initial up-charge increases, the cost of flexibility increases as well, thus decreasing 

the value of flexibility-forcing decisions. Beyond a certain up-charge threshold, 

introducing flexibility does not add any value and decision scenario I is chosen. 

6.5 Variations in demand scenarios 

Because the value of flexibility is by definition context-dependent, it is interesting to 

examine the impact of the level of uncertainty on decision-making and the outcome of the 
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valuation approach presented. To do this, this section uses a two-parameter 

characterization of demand uncertainty and examines the sensitivity of flexibility value to 

these parameters. 

6.5.1 Parameter definition 

In order to reduce the number of degrees of freedom in defining demand uncertainty, as 

represented by the decision tree in Figure 18, this section will characterize the demand 

scenarios using a simple two parameter model comparable to a binomial lattice. The 

resulting simplified tree is shown in Figure 30.  
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Figure 30: Simplified decision tree using u and p parameters 

The parameter p represents the probability of an upward transition (at any stage), while 

the probability of a downward transition is simply its converse, 1 – p. At every upward 

transition, the demand level from the previous stage is multiplied by the parameter u to 

obtain the next period’s demand level (note that it cannot exceed 100%). Demand is 

divided by u for downward transitions. In this way, u characterizes the volatility of 

demand, such that: 
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 tu eσ=  (6.13) 

where σ is the annual standard deviation (volatility) of demand; and t is the length of a 

period in years.  

The values used as a starting point for the main parameters are reported in Table 16. 

Parameter Value 

DF0 0.3 

p 0.5 

u 1.65 

t 2 

σ 35% 

Table 16: Simplified decision tree parameter values 

6.5.2 Sensitivity to u and p parameters 

The sensitivity of the value of flexibility and related decisions to u and p parameters is 

examined here for a number of discrete levels of initial demand.  

Figure 31 shows how the value of flexibility varies with u and p parameters for a starting 

demand level of DF0 = 0.2. Below a threshold u and p value, flexibility does not add 

value, and decision scenario I is preferred. Passed this threshold, decision II becomes 

preferred, and the value of flexibility increases as either u or p increases. Because the 

flexibility introduced in the case study effectively only becomes useful if demand 

increases, it can be expected that its value would increase as the probability of an upward 

trend in demand increases. In addition, as with most types of flexibility, value could be 

expected to increase as uncertainty increases, which occurs here along the u (volatility) 

axis.  
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Figure 31: Sensitivity of flexibility value and decision to u and p parameters, for DF0 = 0.2 

The graph in Figure 32 displays the same analysis done with a starting demand level of 

0.25. At this demand level, there are two distinct zones where flexibility has a non-zero 

value. In the first zone, decision II is the preferred scenario, and a similar behavior to the 

previous analysis is observed, where the value increases with increasing p and u. 

Decision II ceases to be preferred when u reaches a value of 2.0, however, because then 

the “high” value for demand at stage 1 surpasses 0.5, and flexibility-forcing at that stage 

is no longer valuable (it is automatic). Therefore, at u = 2, the value of flexibility drops to 

zero.  

Beyond this point, at high enough u and p values, there is a second zone where decision 

IV starts being preferred, and the value of flexibility once again increases with u and p.  
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Figure 32: Sensitivity of flexibility value and decision to u and p parameters, with DF0 = 0.25 

The same effects can be observed in the analysis from Figure 33. The zone favorable to 

decision II ends beyond u = 1.65, and the zone where decision IV is preferred is larger. 

Overall, the area where flexibility has a non-zero value has also grown in size. As a 

general trend, the height of the peak for decision II is decreasing with increasing initial 

demand, while the height of the decision IV zone is increasing with initial demand. As 

initial demand grows, more values of the multiplying factor u lead to flexibility being 

required by demand in subsequent periods; thus the advantage of delaying flexibility-

forcing is reduced, and the benefit of early flexibility-forcing are enhanced. 
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Figure 33: Sensitivity of flexibility value and decision to u and p parameters, with DF0 = 0.3 

This trend continues as initial demand level is increased to 0.35 (shown in Figure 34). 

With an initial demand level of 0.4, the zone where decision II is preferred has all but 

disappeared, and decision IV is preferred for the majority of the values of u and p 

considered (Figure 35). Within the range of parameter values considered, the value of 

flexibility reaches a peak of $48 million.  
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Figure 34: Sensitivity of flexibility value and decision to u and p parameters, with DF0 = 0.35 
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Figure 35: Sensitivity of flexibility value and decision to u and p parameters, with DF0 = 0.4 
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6.6 Case variation: Product A as a mature technology 

In the base case analysis and the variations considered above, both products A and B are 

considered new technologies, and undergo learning as they are introduced in a plant. This 

is representative of a scenario where two competing technologies are introduced in a 

market, and it is uncertain which of the two will dominate the market segment when the 

technology and consumer preferences have stabilized.  

Another interesting case variation to consider is for a single new technology being 

introduced in production. Here, for example, with product B being the new, up-and-

coming technology, product A would be a mature technology for which learning does not 

need to occur in either plant 1 or 2.  

6.6.1 Sensitivity analyses with a mature product A 

In this section, the sensitivity analyses conducted in section  6.4 above are re-examined 

with the unit cost of product A initially set at its optimal value, and no learning scope. 

The same base case parameters apply in all other instances, and learning parameters are 

left at their previous values for product B. 

6.6.1.1 Sensitivity to F parameter 

The value of flexibility for this new case is plotted against the F-parameter in Figure 36. 

Dotted lines and roman numerals indicate decision changes for the new case only. First, it 

can be noticed that the value of flexibility when A is mature either exceeds or equals the 

value in the base case. Because product A does not experience learning effects, the 

reduction in its individual plant production volume which occurs when flexibility-forcing 

is implemented does not increase product A’s unit cost. The overall costs of flexibility-

forcing are thus reduced. In addition, the optimal value for F has also shifted from 0.5% 

to 0.3%, with a peak value of approximately $7 million.  

In addition to changes in value figures, the decisions made in this new case are also 

modified. At low F values, decision IV is now preferred over decision III. The transition 
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point from a flexible decision (II) to a non-flexible decision (I) has also shifted, from an F 

of 7% to an F of 9%. 
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Figure 36: Sensitivity of flexibility value and decision to F parameter, with a mature product A 

6.6.1.2 Sensitivity to learning parameters 

Figure 37 and Figure 38 show the variation of the value of flexibility with learning rate 

(parameter b) and learning scope. As expected, once again having a mature product A 

increases the value of the flexibility introduced for product B. Moreover, this new context 

significantly shifts the learning rate at which the transition to flexibility occurs – from 

0.125 to 0.095. In this case, flexibility is worthwhile even for much slower learning rates 

than the one considered in the base case. 
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Figure 37: Sensitivity of flexibility value and decision to learning rate, with a mature product A 
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Figure 38: Sensitivity of flexibility value and decision to learning scope, with a mature product A 
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6.6.1.3 Sensitivity to cash-flow model parameters 

FiguresFigure 39Figure 40 andFigure 41 show the variation in the value of flexibility 

with discount rate, initial flexibility up-charge, and the ratio of ongoing to initial 

flexibility up-charges, respectively. All three graphs display an increase in value for the 

case where A is a mature product. Furthermore, decision shifts occur in all three analyses. 

The discount rate where the decision switches from IV to II is shifted from 4% to 10%, 

meaning that at a reasonable discount rate of 5% for the automotive industry, decision IV 

would now be preferred. For the second analysis, the threshold initial up-charge also 

moved, from 9% to 11%. For the third analysis, decision I is completely eliminated, and 

flexibility has a non-zero value for all the ratios of on-going to initial up-charge 

considered. 
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Figure 39: Sensitivity of flexibility value and decision to discount rate, with a mature product A 
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Figure 40: Sensitivity of flexibility value and decision to initial flexibility up-charge, with a mature 

product A 
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Figure 41: Sensitivity of flexibility value and decision to the ratio of on-going vs. initial flexibility up-

charge, with a mature product A 
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6.6.2 An upper-bound estimate 

Using the understanding acquired from the multiple sensitivity analyses presented above, 

it is interesting to finally conduct an analysis to determine an approximate upper bound 

for the value of flexibility driven by learning, in the case of automotive assembly. To do 

this, some of the parameter values were revised to reflect less conservative assumptions. 

Product A was also assumed to be a mature technology. The revised values are reported 

in Table 17.  

Input Symbol Value 

Discount rate r 5% 

CapEx on-going flexibility up-charge CapUp 15% 

Learning rate b 0.14 

Learning scope Scope 85% 

F-parameter F 1% 

Probability of “up” transition p 0.75 

Volatility parameter u 1.7 

Table 17: Revised inputs for upper bound estimate 

Decision scenario ENPV ($million) 

I 2,400.4 

II 2,400.4 

III 2,406.1 

IV 2,350.7 

Table 18: Expected NPV of costs by decision scenario, for upper-bound case 

The resulting expected NPV of costs for each decision scenario are reported in Table 18. 
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The preferred decision in this case is decision IV, and the expected value of flexibility 

driven by learning is approximately $50 million.  

Because this value may appear small compared to total costs of production, it may be 

useful to also look at it in terms of its return on investment. The investment necessary to 

implement this flexibility at stage 0 (for decision scenario IV), represented by the initial 

capital up-charge, is approximately $10 million, as indicated previously in section  6.3.2. 

The expected ROI (expected NPV divided by initial investment) in this case is 

approximately 500%.  

Additionally, it is possible to consider the extra operational cost incurred because of 

flexibility-forcing (as explained in section  6.2.3) during the initial stage as part of the 

initial investment or price of the flexibility. This extra cost is plotted against time in 

Figure 42, and its present value is $4.5 million.  
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Figure 42: Additional costs from flexibility-forcing incurred in stage 0, without up-charge 

A more conservative value for the return on investment would therefore be: 
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The investment in flexibility can thus be highly justified by its potential return. 
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7 Conclusion 

In a context of constant technological change, firms can address uncertainty in two ways, 

or a combination of them, when making a technology implementation decision: by (a) 

improving the quality and quantity of current information about that decision (i.e. 

reducing the uncertainty); and (b) implementing flexible business strategies that allow the 

firm to adapt to future uncertain events. The former approach implies taking into account 

the future evolution of a novel technology’s performance, including economic 

performance. To do this, decision-makers need tools to both estimate this future 

performance, and to identify the most effective ways to positively impact it. Learning 

theory provides a useful framework to examine the gains in productivity that accrue over 

time with increased experience. Moreover, process-based cost modeling leverages 

technical knowledge about a process to provide a static evaluation of economic 

performance, and the identification of primary operational cost drivers. By coupling 

PBCM with learning theory, it is possible to model the dynamic cost behaviour and 

overall performance of a process as experience increases, and to identify the main 

operational drivers of cost learning.  

The second approach involves evaluating feasible technology decisions under conditions 

of external uncertainty, such as demand or price uncertainty, and using the best currently 

available information. A cash flow model is an appropriate tool for financial evaluation 

of business decisions, and combining it with a decision tree model allows one to capture 

the effects of external uncertainty on future financial performance, as well as potential 

future modifications to any initial technology implementation decisions. Furthermore, by 

combining a dynamic process-based cost modeling approach with cash-flow and decision 

tree modeling, it is possible to investigate the potential impact of approach (a) on 

approach (b). More specifically, one can examine how improving current information on 

future financial performance through learning theory can change strategic decision-

making with regards to flexibility.  

 By incorporating dynamic learning effects into a static process-based cost model, it is 
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possible to characterize the cost evolution attributable to learning both in terms of its 

operational drivers, and its implication across various cost elements. For the detailed case 

investigated in this paper – automotive general assembly, labor costs were found to be the 

cost elements most substantially reduced by learning. Additionally, manufacturing time 

learning was found to be the main driver of the cost savings in assembly. This 

characterization should be valuable to the operational manager in identifying strategies 

and focusing his or her learning efforts to most effectively drive down the cost of the 

novel technology at hand. It should also provide insight for the technology decision-

maker to better estimate the future economics of this novel technology, and therefore 

improve performance targets and technology selection.  

The results indicate that the cost savings attributable to learning are not distributed evenly 

across all cost elements of a process. By comparing three processes – general assembly, 

tube hydroforming, and copper wire drawing – it was possible to illustrate that this 

distribution depends on the technical and financial particularities of the system analyzed. 

Explicitly considering the particular cost structure and operational conditions of a process 

provides insight into the primary drivers of cost learning. This type of insight can be used 

by managers and engineers to focus learning activities and specifically target the most 

effective operational drivers, in order to facilitate learning and extract the most value and 

cost savings from these activities. 

In addition to information on the drivers of learning-derived cost savings, the dynamic 

PBCM method should enable decision-makers to more accurately project the economic 

impact of learning for a specific novel technology. Ultimately, any projection of this sort 

requires some method to estimate future change. Whether this can rely upon statistical 

extrapolation or must be based solely on expert elicitation, the estimate should be 

improved by incorporating technical-level understanding of operational and technological 

characteristics. This is true because operational and technical information about an 

emerging product or technology is often better known or at least easy to estimate in 

advance than financial parameters. As a consequence, the method presented here provides 

a particularly useful tool to structure projections in cost learning for a newly-developed 



 

 106

process.   

Considering learning effects in the evaluation of product-to-plant allocation in 

automotive general assembly was shown to have a large impact on the expected cost of 

production. In cases shown above, expected costs when including learning effects were 

approximately 25% higher than perceived costs when learning was ignored. In addition, 

these expected costs varied depending on the level of flexibility introduced by the 

allocation decision. Thus, the structured characterization of learning effects provided 

insight into the valuation of flexibility in a case on automotive assembly, for which costs 

are dominated by labor. The value of flexibility estimated when considering learning 

effects surpassed the value found when only considering traditional flexibility costs, such 

as up-charges on capital expenditure. Conceptually, this increase in the value of 

flexibility can be attributed to recognizing the additional value that derives from 

improving labor functional flexibility – i.e. the ability of labor to produce multiple 

products – which can be attained through cumulative experience, and which is typically 

excluded from real options assessments.  

The value of labor functional flexibility driven by learning effects was found to vary 

depending on a number of operational and financial conditions. Depending on these 

conditions, increases in the value of flexibility were also found to change economically-

based strategic decisions with respect to product-to-plant allocation. In particular, in 

situations where an evaluation that does not consider learning would yield a non-flexible 

decision, explicit consideration of learning effects led to flexibility-forcing decisions 

which decreased costs by up to $50 million, for a prior investment of only $10 million, 

plus $4.5 million in additional operating costs. This value increases with decreasing 

discount rate, increasing learning scope and learning rate, increasing volatility, and 

increasing probability of upward shifts in demand. It also increases as the difference 

between the investment for on-going vs. initial implementation of flexibility increases. 

Furthermore, the value can be maximized by choosing an optimal level of flexibility, i.e. 

by allocating an optimal amount of production to a second flexible facility. The method 

presented can therefore be a useful tool for decision-makers to consider learning in their 
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assessment of technology and flexibility choices, and for improving the value of such 

strategic decisions. 

Because the method presented allows the analyst to look at sensitivity of the value of 

labor flexibility and its associated decisions to various operating conditions, it is also 

helpful for investigating the potential impact of changes in these conditions. In particular, 

the full path traced from learning effects in operational parameters to the valuation of 

labor flexibility allows operational managers and engineers to estimate the impact of 

improving learning, at the operational level, on the financial value of strategic decisions 

regarding flexibility. Results also indicate that combining the concepts of learning effects 

with labor flexibility reveals an added value of flexibility in cases where this value would 

generally be overlooked. 
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8 Future work 

Many aspects of the work presented here would deserve further attention in order to 

reduce the number of simplifying assumptions and increase the impact of the conclusions. 

For instance, a major area which was not examined here is the revenue-side impact of 

learning effects and worker flexibility. By allowing total production volume to vary and 

to not equal market demand, a reasonable hypothesis could be that worker flexibility 

driven by learning would allow the capturing of high demand peaks, thus increasing the 

overall value of flexibility. Furthermore, by considering the interaction between multiple 

firms producing competing products, it could be possible to observe a competitive 

advantage to labor flexibility. For example, the ability to produce new products faster or 

at lower cost could yield an advantage to a firm with labor flexibility, over a competitor 

who does not take learning effects into account in his decision-making.  

Other simplifying assumptions that were made about the learning effects considered 

could be investigated in future work. While cross-parameter cost effects were considered, 

cross-learning effects between different products and plants were ignored, as well as 

forgetting effects. These effects have been shown to be significant in previous literature, 

and could be hypothesized to have an impact on the results presented here. Furthermore, 

the manner in which learning is assumed to occur is through accrued experience only; 

investigation of the trade-offs involved in training and other knowledge management 

tools could yield interesting results. In addition, although the functional form chosen for 

the learning model is the most widely used in literature, other functional forms have been 

introduced which could lead to different insights into the value of learning-driven 

flexibility. 

Finally, in order to make the case study more realistic and the conclusions more concrete, 

it would be useful for future work to improve on data quality and quantity, both in terms 

characterizing learning effects for actual novel technologies, and in terms of representing 

real products, plants, and allocation decisions for flexibility valuation. Acquiring data for 

case studies in other industries would also be useful to validate general conclusions in 
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non-automotive settings. In particular, examining less complex products or industries 

could lead to a clearer observation of learning effects, and stronger conclusions on the 

value of flexibility.  
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Appendix 1: Differences in Learning Effects between 
Processes and Technologies 

The cost of automotive is dominated by labor costs, both direct and indirect. Two other 

cases are analyzed below to illustrate the variations in learning effects that occur when 

the cost elements for a technology are distributed differently. The first alternative 

example is of a tube hydroforming process, for which cost is mainly driven by fixed 

costs, such as tooling, equipment, and building. The second is a copper wire drawing 

process, the cost of which is strongly dependent on raw materials use. For this analysis, a 

simplified and more generic process-based cost model was used, and is described in 

section  0.  

Generic cost model description 

Production costs reported for the case studies presented here are the result of a simple 

process-based cost model. First, each product is assumed to be produced through a 

process, each completed in cycle time CT. Given an overall target net volume Vnet and 

reject rates rej for the process as operating parameters, the gross number of parts Vgross 

made by the process is: 

 
1

net
gross

VV
rej

=
−

 (9.1) 

The total operating time t required in a year for the production of Vnet defect-free parts is 

therefore: 

 grosst CT V= ∗  (9.2) 

The operating time, or uptime, of a production line is considered to be 24 hours per day 

on days when the plant is open, less the time when the line is either idle due to lack of 

demand, or unavailable for production: 
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 (24 )UT DPY NS UD PB UB Idle= ∗ − − − − −  (9.3) 

where UT is line uptime per year; DPY is the number of days of plant operation per year; 

NS is amount of time per day when no shifts are run; UD represents unplanned downtime 

and breakdowns; PB is time for paid breaks; UB is time for unpaid breaks; and Idle is the 

time during the year when the plant is available, but not running, for example due to lack 

of demand. Given the uptime of a single line and the operating time requirements to 

produce a target volume, the integer number of production lines (nl) needed is: 

 tnl
UT
⎡ ⎤= ⎢ ⎥⎢ ⎥

 (9.4) 

It is also possible to compute the annual amount of paid time (APT) required from 

workers in the plant, considering that they receive wages for paid breaks, unplanned 

downtime, as well as when the plant is idle. 

 (24 )APT NS UB nl= − − ∗  (9.5) 

The next part of the PBCM constitutes the financial model, and applies factor prices to 

the resource requirements described above. It also allocates cost over time and production 

to compute a unit cost per part produced. The annual costs in the model presented here 

are divided into seven categories: 

 total material labor overhead energy building equipment toolingC C C C C C C C= + + + + + +  (9.6) 

Material cost is the product of the number of parts entering production (ns), the weight of 

the part w, and the price per unit mass p. Parts rejected during processing constitute scrap 

which can be sold at a price pscrap. 

 0( )material s s scrapC n wp n n wp= − −  (9.7) 

Labor cost is the product of the paid time required to produce the target volume, and the 

labor wage rate pwage. Because the model assumes that other parts or products may be 

produced in the plant when it is available but not used to produce the part of interest, 
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the labor time attributed to the production of this part is not necessarily equal to the total 

annual paid time of the plant. Instead, this annual paid time is multiplied by the fraction 

of the available plant time (UT + Idle) which is actually used to produce the part. 

 labor wage
tC APT p

UT
= ∗ ∗  (9.8) 

The overhead cost in this model is meant to capture the indirect labor required to 

maintain production, which is modeled using a ratio of the number of indirect workers 

required for each direct worker (ind). Indirect workers are paid at a wage rate pind; the 

cost of overhead is thus: 

 overhead ind
tC APT ind p

UT
= ∗ ∗ ∗  (9.9) 

The energy cost is proportional to the average energy consumed by the process, which is 

modeled as a power requirement E multiplied by the operating time of the process: 

 energy energyC E t p= ∗ ∗  (9.10) 

Building, tooling and equipment are considered to be capital investments. In order to 

incorporate these investments into a unit cost, the financial model distributes them across 

time by determining a series of annual payments which are financially equivalent to the 

initial investment. The distribution is done over the useful life of the building, equipment 

or tool in question, and applies a common discount rate. The capital recovery factor  

CRFj (where the index j is used to represent either building, equipment, or tooling) used 

to determine annual payments is therefore: 

 (1 )
(1 ) 1

j

j

L

j L
r rCRF

r
+

=
+ −

 (9.11) 

where r is the annual discount rate and Lj is the useful life in number of years.  
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The annual building cost is computed given an initial building capital investment 

CAPbuilding: 

 building building building
tC CRF CAP

UT
= ∗ ∗  (9.12) 

The equipment in the plant is assumed to be non-dedicated and shared across other parts 

produced; therefore, the cost of equipment can be multiplied by the fraction of available 

plant time used to produce the part of interest. Equipment capital investment is the sum of 

the equipment capital required for each line (CAPequipment), multiplied by the number of 

lines in the plant. The annual equipment cost is: 

 equipment equipment equipment
tC CRF nl CAP

UT
= ∗ ∗ ∗  (9.13) 

Tooling, on the other hand, is assumed to be dedicated to a certain part. The entire tooling 

capital investment is therefore attributed to the part considered by the model: 

 tooling tooling toolingC CRF nl CAP= ∗ ∗  (9.14) 

Finally, these annual costs can be used to compute a unit cost per part (U): 

 total
total

net

CU
V

=  (9.15) 

The production cost obtained from the PBCM can be examined in a number of different 

ways. Individual cost categories and sub-processes can be compared to identify primary 

cost drivers. Sensitivity analyses on various process parameters can also be performed to 

further characterize their impact on system and cost behavior. A detailed level of 

sensitivity analysis is possible because the model derives cost from technical information 

defined at the process level, rather than using statistical methods to determine cost 

directly from the part description. This makes it a powerful tool to understand the effects 

and interactions of the different technical parameters which impact manufacturing cost. 
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Comparison of learning between technologies 

The cost model input data were modified to reflect the individual characteristics of the 

three processes (see Table 19).  Note that in the case of copper wire drawing, a unit of 

output is considered to be 1 kilometre of wire. These values were developed through 

input from experts in these two respective industries. Although indicative of current 

operations, these values are not reflective of any given firm. 

Key inputs Hydroform Assembly Copper wire 

Production volume (units/year) 500,000 200,000 400,000 

Interest rate (%/year) 12% 12% 12% 

Workers per line  3 500 1 

Indirect/direct worker ratio 0.2 0.5 0.2 

Power consumption (kWh/line) 240 40,000 70 

Part weight (kg) 2.8 - 7 

Material price ($/kg) 0.65 - 3.30 

Scrap price ($/kg) 0.10 - 1.00 

Equipment investment ($/line) $4.5M $15M $1.5M 

Tooling investment ($/line) $1.7M $75M $1.5M 

Building area per line (m2) 2,200 95,000 2,500 

Table 19: Key cost model inputs 

Learning was modeled for three parameters: CT, UD and rej. Monthly data on cycle time 

and downtime for a single hydroforming line was used to determine the learning 

parameters, which are reported in Table 20.  
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Process parameter a b Significance on F-statistic 

Cycle time (CT) 2.829 0.093 1.077E-6 

Unplanned downtime (UD) 0.562 0.177 0.0044 

Table 20: Learning curve parameters from tube hydroforming data 

No data were available to perform a regression on reject rate improvement. For the 

purposes of this study, it was assumed that the reject rate parameter experienced the same 

learning pattern as unplanned downtime, after normalization of the learning curve. The 

maximum and minimum saturation levels used to normalize each process parameter’s 

learning curve for the tube hydroforming process are shown in Table 21. Values for cycle 

time and unplanned downtime are based on the collected data, while reject rate maximum 

and minimum values are assumptions based on estimates by hydroforming process 

experts from the same firm at which data was collected. 

Process parameter Ymax Ymin Scope 

Cycle time (CT) 1.160 0.764 34% 

Unplanned downtime (UD) 0.103 0.047 54% 

Reject rate (rej) 0.200 0.100 50% 

Table 21: Learning scope parameters for tube hydroforming 
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 Initial cost ($/unit) Final cost ($/unit) 

Cost element Hydroforming Assembly Wire Hydroforming Assembly Wire 

Material 2.19 - 27.85 1.98 - 25.54 

Labor 3.43 897.13 0.74 1.89 582.76 0.41 

Energy 0.58 94.70 0.11 0.34 65.86 0.06 

Overhead 0.69 299.04 0.15 0.38 194.25 0.08 

Tooling 8.05 41.61 2.08 8.05 41.61 2.08 

Equipment 4.49 85.76 1.27 2.48 55.71 0.71 

Building 3.19 119.40 1.99 1.76 77.56 1.10 

Total 22.61 1,537.63 34.18 16.87 1,017.75 29.98 

Table 22: Initial and learning improved costs for each tube hydroforming, general assembly, and 

copper wire drawing processes, by cost category 

Initial cost figures and learning-improved costs (after 1.25 million parts produced) are 

shown by cost element in Table 22. Results, as displayed in Figure 43, show that learning 

impacts on individual cost elements differ significantly across the three processes. For the 

tube hydroforming process, reductions in equipment cost accounts for 35% of the total 

cost reduction attributable to learning, with reductions in labor and building costs each 

accounting for 25%, respectively. In contrast, for the case of general assembly, 60% of 

cost reduction due to learning occurs in the direct labor category. When indirect 

(overhead) labor is included the learning-related savings attributable to labor climbs to 

over 80%. For copper wire drawing, 55% of the cost savings occur in materials expenses. 

However, when considering cost elements individually, it appears that the scope of 

learning in material cost (from $27.85 to $25.54, an 8% decrease) is lesser than the scope 

of learning in labor cost (from $0.74 to $0.41, a 45% decrease). This is because all three 

learning parameters considered have an impact on labor costs, while material cost is only 

affected by reject rate learning. Moreover, the impact of reject rate improvement on 
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material cost is mitigated by the possibility of selling material scrap at a reasonable price. 

Nevertheless, due to the dominance in materials cost for this process, learning there 

remains the most critical for cost reduction. 

 

Figure 43: Left - Percent of initial cost saved through learning by cost element for (a) hydroforming; 

(b) general assembly; and (c) copper wire drawing processes. Right - Cost improvement by 

operational parameter, for identical and differing learning rates and scopes. 
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Modeling results also revealed that main cost learning drivers can differ from one 

technology to the next. While in the case of tube hydroforming, cycle time learning was 

the main driver for cost improvement, Figure 43 shows that reject rate learning is the 

main source of cost savings for copper wire drawing. Cycle time is the main learning 

driver for general assembly.  

Differences in cost structure and operational conditions for each process translate into not 

only differences in the underlying drivers of learning benefits, but also to distinct overall 

cost learning behaviors. Figure 44 shows the resultant aggregate learning behaviour that 

derives from the operational characteristics listed in Table 19. Clearly, all three processes 

exhibit dramatically different aggregate behaviour despite being based around identical 

operational characteristic learning rates and scopes. Table 23 reports parameters from 

fitted log-linear curves for each process’ total cost, representing their implicit aggregate 

learning rates.  

Learning curve a b Significance on F-statistic 

Tube hydroforming 48.62 0.0769 2.64E-18 

Automotive assembly 4837.71 0.1161 1.05E-45 

Copper wire drawing 46.49 0.0320 1.21E-21 

Table 23: Log-linear model parameters for implicit aggregate cost learning of each process 

Learning in general assembly only appears slower on a time scale due to a lower 

production volume, but has a more significant impact on cost than for hydroforming or 

copper production after about 18 months. 
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Figure 44: Cost learning curves for tube hydroforming, car general assembly, and copper wire 

drawing processes 
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